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GENERATING FUNCTIONS

Solve an infinite number of related problems in one swoop.
*Code the problems, manipulate the code, then decode the answer!
Really an algebraic concept but can be extended to analytic basis for interesting results.

(i) Ordinary Generating Functions

{a0, a1,… , ak , … } sequence where the kth term is the solution of some problem, for every k.

Create the object (“formal power series”)

k=0
k

k a  x
∞

∑  where xk is like a place-holder for ak.  This looks like an analytic power series but it’s NOT (not

yet, anyway).

Rules of Operation: just do what comes naturally.

( )∑ ± ∑ ∑ ± a  x    b  x  =  a   b  xk
k

k
k

k k
k

( ) ( )∑ ∑ ∑ a  x   b  x  =  c  xk
k

k
k

k
k

where ck = 
j=0

k

j k- j a  b∑

Examples

(I) ak = 1 , 0 ≤ k ≤ n
ak = 0 k > n

k=0
k

k n
n+1

 a  x  =  1 +  x +  _  +  x  =  
1 -  x
1 -  x

∞

∑

why is last equality true?  Because .......

  (1 + x + … + xn)(1 - x) = 1 + x + … + xn

                                            = 
 -  x -  _  -  x  -  x

1 -  x

n n+1

n+1

(ii) ak = 1   ∀k.
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k=0

k x  =  
1

1 -  x

∞

∑

(1 -  x) x x x  x  -   x  =  1
k=0

k

k 0

k

k 0

k+1

k 0

k

k 1

k=  =
∞

≥ ≥ ≥ ≥
∑ ∑ ∑ ∑ ∑








NOTE:   You don’t need anything about convergence!  At the same time, you shouldn’t think of “x” as a
variable into which you substitute values (not yet, anyway) but soon it will be OK).

(iii) If we have the o.g.f., we can find the sequence: e.g. Suppose the o.g.f. is (1 + x)n

then the sequence is found as follows:

(1 +  x )  =   
n

k
 xn

k 0

k

≥
∑ 








Thus, ak = 
n

k







 (note that ak = 0 for k > n).

Exponential Generating Function

{a0, a1, … , ak,… } ← k 0

k k 
a
k!

 x
≥

∑ .

k

k k

k

k k

k

k k 
a
k!

x  
b
k!

 x  =   
c
k!

 x∑ ∑ ∑














 , where

k
j=0

k

j k- jc  =   
j

k
 a  b’∑ 






 c’  =   a’  b’k

j=0

k

j k- j∑

k

j=0

k
j kc

k!
 =   

a
j!

 
b

(k j)!∑ •

Examples

(i) ak = 1, 0 ≤ k ≤ n; ak = 0 for k > n
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k=0

n k

 
x
k!∑

(ii) ak = 1 ∀k

k 0

 k
xx

k!
 =  e

≥
∑

(iii) ak = nk (≡ number of k-perms of an n-set)

(iv) If we have the e.g.f. sin x then

sin x = k 0

k

2 k+1(-1)

(2 k+ 1)!
 x

≥
∑

so a2k + 1 = (-1)k k ≥ 0
a2k = 0 k ≥ 0

Some Generating Function Manipulations

Suppose A(x) = k
k

k

k

k a  x ,  B(x) =  x∑ ∑

- Then A(x) B)(x) = k
k

k d  x∑
  where

k
j=0

k

j
j=0

k

jc  =   a 1 =   a∑ ∑•

- Similarly, A2(x) = k
k

k d  x∑
 where

k
j=0

k

j k- jd  =   a a∑

e.g. a
k = 

n

k









then

2 n

n
 =   

n

kk=0

n 2














∑
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- Also,

1

x
[A(x) - a ] =  a  x0

k 0
k+1

k

≥
∑

 , which is

 the o.g.f. for the sequence {a1,a2,… ,ak,…} which is the original sequence shifted one place to the left (and the
first term dropped off).

By contrast, xA(x) =  k 0
k

k+1 a  x
≥

∑
  which is

 0 + k 0
k-1

k a  x
≥

∑
 or the o.g.f. for the sequence

{0, a0, a1,… , ak , …}
   ↓
(k + 1)th place.

d

dx
  a  x   ka  x

k 0
k

k

k 1
k

k-1

≥ ≥
∑ ∑≡

which is the o.g.f. for {a1, 2a2, 3a3, … , kak, …

All of those ideas carry over to e.g.f. in an analogous way.

Applications to Counting Problems
 

Here the coefficients of the powers of x can provide the answers we seek, e.g.

1. Ordinary Generating Functions
How can we enumerate all possible selections from 3 distinct objects a,b,c?

1 + ax ≡ a is chosen (ax) or not (1)
1 + bx ≡ b is chosen (bx) or not (1)
1 + cx ≡ c is chosen (cx) or not (1)

By product rule,

(1 + ax)(1 + bx)(1 + cx) ≡ all possible selections
1 + (a + b + c)x + (ab + bc + ac)x2 + (abc)x3

↓ ↓    ↓
  one object, either 2 objects    3 objects

a,b,c

Suppose we only wish the number of selections of 1,2,3 of the objects.  Then we can count this number by
weighting each selection with weight 1.  This is equivalent to setting
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 a = 1 = b = c.
1 + 3x + 3x2 + x3 = (1 + x)3

How many ways to select r balls from 2 green, 3 gold, 4 blue, 8 red?

Here the order of the selection of the balls doesn’t matter.  You can select 0, 1, 2 or 3 green balls, so 1 + x + x2 +
x3 enumerates these choices.  But this is the same for the gold balls.  For the blue it is 1 + x + x2 + x3 + x4, for the
red
1 + x + … + x8.  Hence solution is coefficient of xr in

(1 + x + x2 + x3)2 (1 + x + x2 + x3 + x4) (1 + x + … + x8)

In general we have:

Suppose we have p types of objects, with ni indistinguishable objects of type i, i = 1, 2, …, p.  The number of
ways to pick k objects if we can pick any number of objects of each type is given by the coefficient of xk in

(1+ x +_+ x )(1 + x +_+ x )_ (1+ x +_+ x )1 2 pn n n

Suppose the number of each type of object is “infinite” (think of this as solutions with repetition allowed).  Then
the above formula becomes

(1 + x + … + xk + …)p = 

p
-p1

1- x
 =  (1- x )







The coefficient of xk in this is 

- p

k
 (-1)   or  

p+ k-1

k
k
















(non-distinct balls, distinct boxes)

Exercise: Find the number of ways to distribute r identical balls into 5 distinct boxes with an even number of
balls, not exceeding 10, in each of the first two boxes, and between 3 and 5 balls in the  other 3 boxes.

Let the number in box i be ei.  Then i=1

5

i e∑
 = r

0 ≤ e1 , e2 ,≤ 10 , e1, e2 even
3 ≤ e3, e4, e5 ≤ 5
The generating function for the solution is
(1 + x2 + x4 + x6 +x8 + x10)2 (x3 + x4 + x5)3

and the solution is the coefficient of xr in the above generating functions

Exercise: Find number of ways to distribute 25 identical balls into 7 distinct boxes if first box has up to 10 balls,
other boxes any number.

[x25] G(x) = [x25] (1 + x + … x10)(1 + x + x2 + …)6
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= [x25]

1- x
1- x

11







61

1- x






= [x25] (1 - x11) (1 - x)-7

= [x25] (1 - x11) r

r 
7 + r-1

r
x∑ 








 

= [x25]

=  

7 + 25-1

25
 -  

7 + 14 -1

14

















= 

31

25
 -  

20

14

















N.B. Could have argued this directly, viz., fill the boxes

without constraint in 

7 + 25-1

25









 ways, how many of these

have at least 11 balls in box 1 is 

7 + 14 -1

14









, now subtract.  So g.f. not always required.

Evaluate: k 0

2

 k 
n

k≥
∑ 








Recall that (Absorption)  
 k 

n

k
 =  n

n-1

k-1

















∴ k 0

2

 k 
n

k≥
∑ 








= k 0

n
n-1

k-1

n

k≥
∑ 














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=    
n  

n-1

k

n

k+1k=0

n-1

∑ 














=    
n  

n-1

k

n

n-1- kk=0

n-1

∑ 














The sum is the coefficient of xn - 1 in the product

 (1 + x)n - 1 (1 + x)n = (1 + x)2n - 1, which is just 

2 n-1

n-1









.  Thus

   k 0

2

 k 
n

k
 =  n 

2 n-1

n-1≥
∑ 
















Find the number of integer solutions to
x1 + x2 + … + xn = k

with 0 ≤ ai ≤ xi ≤ bi

Generating function for variable xi is

Ai (z) = i
a a bA (z)  =  z  +  z _+ zi i+1 i

The composite generating function is
A(z) = A1(z) A2(z)  … An(z)
The solution is the coefficient of zk in A(z), [zk] A(z)

Note: Technically we can extend the above to allow negative values of the xi.  Thus, to find the number of
integer solutions of

x1 + x2 + … + x10 = n ,  -2 ≤ xi ≤ 2 ,

the ‘ogf’ is (z-2 + z-1 + 1 + z + z2)10, and the solution is

[zn](z-2 + z-1 + 1 + z + z2)10 .  Verify by hand that this works for n = 4.
‘Making Change’

How many ways to make change for a buck using nickels, dimes, and quarters?

ogf nickels = A1(z) = 1 + z5 + z10 + z15 + …
ogf dimes  = A2(z) = 1 + z10 + z20 + z30 + …
ogf quarters = A3(z) = 1 + z25 + z50 + z75 + …

Required ogf = A(z) = A1(z) A2(z) A3(z)

Solution is [z100] A(z)

Here, to determine coefficient, must multiply out (truncate each series at z 100).
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Exercise: Suppose we also used pennies.  How would the solution then relate to the ogf found above.

Solution: It would be the sum of all the coefficients in A(z) above for terms with degree ≤ 100.  Prove this.

Partitions of an Integer

* partition of n is unordered collection of positive integers that sum to n.  For convenience, often put “parts” in
decreasing order.  (“summands”)
Eg. Partitions of 4 : 4,  3 + 1,  2 + 2,  2 + 1 + 1,  1 + 1 + 1
p(n) = number of partitions of n; p(4) = 5

As distribution problem, this is “indistinguishable balls into indistinguishable into indistinguishable boxes”.
Notice how this differs from integer solutions to an equation (where boxes (variables) distinguishable).
To partition a number, we have to know how many of the summands are 1, 2, 3, … .  The ogf for the 1's is

1 + z + z2 + z3 + … = 

1

1 -  z

for the 2's is         1 + z2 + z4 + …    =   

1

1 -  z2

and so on.  Thus

p(z)  =  
1

1- z

1

1- z

1

1- z
_2 3

















(infinite product)

Exercise: Find the number of partitions of n into summands ≤ 6.
Solution:

Exercise: Find the ogf for an, the number of ways to partition n into distinct summands.

Solution: There can be at most 1 of any type of summand, so ogf is

A(z) =           (1 + z)     x     (1 + z2)     x      (1 + z3)x…
↑ ↑ ↑

          0 or 1         0 or 1                0 or 1
                       one           two                     three

Notice:

A(z) =     
1-z
1- z

 =     
1

1- z -1

2r

r 2 r∞ ∞




Π Π
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   r = 1      r = 1

which is the ogf for partitions with only odd summands.

2. Exponential Generating Function

Suppose we have p types of objects with ni indistinguishable objects of type i, i = 1, 2, … , p.  The number of
perms of length k with up to ni objects of type i is the coefficient of

kx
k! in the egf

1 + x+
x
2!

+_+
x

n
 1 + x+

x
2!

+_+ xSUP
n

n !
_

2 n

1

2
2

2

1















…
1 + x+

x
2!

+_+
x

n !

2 n

p

p









Notice that if there is an unlimited number of objects of each type, the egf is (ex)p and the number of perms of
length k with an arbitary number of objects of type i is the

coefficient of 

kx
k!  in epx , i.e.

(1st place can be filled in p ways, same for the second, third, etc!!)

To ‘prove’ this, note that the coefficient of 

kx
k!  in the product

is 
∑

k!

k !k !_ k !1 2 p  where the sum is over all possible

k1, k2,…, kp ∋ k1 + k2, +…+ kp = k, ki ≥ 0.  This is because the way to find a term in the product with xk is to
have a product

1 2 pk

1

k

2

k

p

x

k !
x

k !
_

x

k !
•

 where k1 + … + kp = k. Now mult. top and
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bottom by k! and sum over all possible such terms.

Exercise:  Find the number of arrangements of r items selected from n distinct items, no repetition allowed.

EGF for item i is 1 + x, i= 1, 2 … , n
EGF for all is (1 + x)n,

Exercise:  Find the number of ways to place 25 people into 3 different rooms with at least one person in each
room.

Solution: For the first room, there is only 1 way to place any number of persons in that room.  Hence the e.g.f. is

x+
x
2!

+
x
3!

+_  =  e -1
2 3

x

.  Thus, since the 3 rooms are different, the e.g.f. for the 3 rooms is

(ex - 1)3 = e3x - 3e2x + 3ex - 1.

Thus, 
 

x
25!

 (e -1)  =   
x
25!

 (3 - 3 2 + 3)
x
r

25
x 3

25

r

r r
r

















 •∑

          = 325 - 3⋅225 + 3

In the terms of the earlier result, p = 3.  What we count is the number of perms of length 25 on {1,2,3} in which
all of 1,2,3 appear (no room empty).  The reason these are perms (and not merely selections as for o.g.f.) is that
the people are distinct - to each assignment of rooms to people we correspond an arrangement of 1's, 2's, 3's.

Find the number of strings of length n that can be constructed using {a,b,c,d,e} if:
a) b occurs an odd number of times

b) both a and b occur an odd number of times.

a) Order is important, so use e.g.f.

egf for b:  
x+

x
3!

+
x
5!

+_  =  
e - e

2

3 5 x -x

egf for all others 
1+ x+

x
2!

+
x
3!

+_  =  e
2 3

x

∴ egf = 
(e )

e - e
2

 =  
1

2
(e - e )x 4

x -x
5x 3x







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[xn] is 

1

2  (5n - 3n).

b) By similar reasoning, solution is

[xn] is

2

x -x 3x1

2
(e - e ) e





  = [xn]

=

=

1

4
(5  -  2 3  +  1)n n•

Distinguishable Balls, Distinguishable Boxes Revisited: Stirling No. of 2nd Kind

Number of ways to put n distinct balls into k non-distinct boxes ≡ S(n,k) (no box empty)
If the boxes are distinct there are k!S(n,k) distributions.

Suppose ball i goes into box C(i).  This gives a sequence C(1), C(2), … , C(n) using the numbers 1, 2, … , k
with each number used at least once.  The e.g.f. for each number is

x+
x
2!

 +  _+  
x
n!

 +_  =  e -1
2 n

x







so for all k the e.g.f. is (ex  - 1)k.  The coefficient of 

nx
n!  in

(e x - 1)k is precisely k! S(n,k); we can compute it as follows:

i=0

k
i (k-i) x x k 

k

i
(-1) e  =  (e -1) = H(x)∑ 








.

Substitute (k - i)x for x in the usual series for ex = n 0

nx
n!≥

∑
 to get

 H(x) = i=0

k
i

n 0

n 
k

i
(-1)  

1
n!

(k- i ) xSUPn∑ ∑







≥

 

   = n 0

n

i=0

k
i n 

x
n!

 (-1)  
k

i
(k- i )

≥
∑ ∑ 







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∴ k! S(n,k) = i=0

k
i n(-1)  

k

i
(k- i )∑ 








 S(n,k) =

1
 (-1  

k
(k- i

i=0

k
i n∑ 








Exercise Find the number of r-digit quatenary requences (digits 0,1,2,3) with an even number of zeros.
Off number of 1's.

↑ ↑
Egf for 0's egf for 1's

 =

= 

=

1

4
  4  =  4  if r >  0r r-1•

Simple form ⇒ combinatorial argument exists.  Can you find one?


