Apm236h1f E. Mazzeo Quiz #2

Friday, October 30th, 2015 Total: 24 marks

Last Name:

First Name:

Student #:

3 marks

1. Show using the precise definition of convexity (that is, not geometrically) that the upper halfplane $H=\{(x,y)\mid y>0\}$ in R^2 is a convex set.

Let
$$p_1=(x_1,y_1),p_2=(x_2,y_2) \in H$$
. We need to show that the line between p_1 and p_2 is also in H , i.e.
$$\forall x_1 \in [0,1] \quad \forall p_1+(1-\lambda)p_2 \in H$$
.

As
$$p_1, p_2 \in H$$
, $y_1, y_2 > 0$, so $2y_1 + (1-2)y_2 > 0$.

5 marks

- 2. Let \mathbf{u} , \mathbf{v} be given $\mathbf{vectors}$ in R2 and a,b given real numbers. Let $\underline{\mathbf{x}}$ =(x,y) be a vector. Suppose the two hyperplanes (lines) \mathbf{u}' $\underline{\mathbf{x}}$ =a and \mathbf{v}' $\underline{\mathbf{x}}$ =b meet at the point \mathbf{q} =(0,1) and the lines are <u>perpendicular</u> to each other. Let P be the polyhedron defined by the following contraints:
- (1) y>=0, (2) $\mathbf{u}' \underline{\mathbf{x}}>=a$ (3) $\mathbf{v}' \underline{\mathbf{x}}>=b$ (4) y<=2
- (a) Draw a general picture of the situation.

(b) Give an example of two vectors **u**, **v** so that the P is bounded.

As above
$$v = (1, 1)$$
 $v = (-1, 1)$.

(c) Give an example of two vectors \mathbf{u} , \mathbf{v} so that the P is <u>unbounded</u>.

4

marks

3. Consider the polyhedra P defined by the following constraints: x+y+z=3, x>=0, y>=0, z>=0

(a) Draw an accurate picture of P labelling its corner points.

(b) List the constraints that are active at the vector a=(3,0,0).

$$\begin{cases} x+y+z=3\\ y=0\\ z=0 \end{cases}$$

(c) List the constraints that are active at the vector v=(1,1,1).

10 marks

- 4. Consider the following l.p.p. in standard (matrix equality) form with $\mathbf{x} = (\mathbf{r}, \mathbf{s}, \mathbf{u}, \mathbf{v}, \mathbf{w}) \ge 0$.
- (1) u =
- (2) 2s + v = 4(3) -6r + 3s + w = 6
- (a) Write it in standard (matrix equality) form Ax=b.

(b) Find a basic <u>feasible (non-degenerate)</u> solution \mathbf{x} and state the corresponding basic variables.

x=(0 0 2 4 6)
Basic variables: u, v, w

(c) Find a basic <u>infeasible</u> solution y and state the corresponding basic variables.

y=(-1 0 2 4 0)

Intensible be course r \$0.

Basic variables; r, v, v

(d) Find a basic $\underline{\text{feasible degenerate}}$ solution \mathbf{z} and state the corresponding basic variables.

2= (0 2 2 00)

Basic variables: S, u and roc vor w.