\(\renewcommand{\Re}{\operatorname{Re}}\) \(\renewcommand{\Im}{\operatorname{Im}}\) \(\newcommand{\erf}{\operatorname{erf}}\) \(\newcommand{\dag}{\dagger}\) \(\newcommand{\const}{\mathrm{const}}\) \(\newcommand{\arcsinh}{\operatorname{arcsinh}}\)
In the previous Section 5.1 we introduced Fourier transform and Inverse Fourier transform \begin{align} & \hat{f}( k )= \frac{\kappa}{2\pi}\int_{-\infty}^\infty f(x)e^{-i k x}\,dx \tag{FT}\\ & \check{F}(x)= \frac{1}{\kappa} \int_{-\infty}^\infty F( k ) e^{i k x}\,d k \tag{IFT} \end{align} with \(\kappa=1\) (but here we will be a bit more flexible):
Theorem 1. \(F= \hat{f} \iff f=\check{F}\). (Already "proved") <!--\end{theorem}-->
Theorem 2.
Proof. Easy. Preservation of inner product follows from preservation of norm.
Remark 1.
Theorem 3.
Proof. Here for brevity we do not write that all integrals are over \(\mathbb{R}\) and set \(\kappa=2\pi\).
span id="corollary-5.2.1">Corollary 1.] \(f\) is even (odd) iff \(\hat{f}\) is even (odd).
Definition 1. Convolution of functions \(f\) and \(g\) is a function \(f *g\): \begin{equation} (f*g)(x):=\int f(x-y)g(y)\,dy. \label{eq-5.2.3} \end{equation}
Theorem 4.
Proof.
Example 1. Let \(f(x)=e^{-\alpha x}\) as \(x >0\) and \(f(x)=0\) as \(x <0\). Here \(\Re \alpha >0\). \begin{equation*} \hat{f}( k )= \int_0^\infty e^{-(\alpha +i k )x}\,dx = -(\alpha +i k )^{-1}e^{-(\alpha +i k )x}\bigr|_{x=0}^{x=\infty}= (\alpha +i k )^{-1} \end{equation*} provided \(\kappa=2\pi\).
In the general case \(\hat{f}( k )= \frac{\kappa}{2\pi}(\alpha+i k )^{-1}\).
Example 2. Let \(f(x)=e^{-\frac{\alpha}{2}x^2}\) with \(\Re\alpha\ge 0\). Here even for \(\Re \alpha=0\) F.t. exists as integrals are converging albeit not absolutely.
Note that \(f'=-\alpha x f\). Applying Fourier transform and Theorem 3 (3),(4) to the left, right we get \(i k \hat{f}= -i\alpha \hat{f}'\); solving it we arrive to \(\hat{f}=Ce^{-\frac{1}{2\alpha} k ^2}\).
To find \(C\) note that \(C=\hat{f}(0)= \frac{\kappa}{2\pi}\int e^{-\frac{\alpha}{2}x^2}\,dx\) and for real \(\alpha >0\) we make a change of variables \(x=\alpha^{-\frac{1}{2}}z\) and arrive to \(C=\frac{\kappa}{\sqrt{2\pi \alpha}}\) because \(\int e^{-z^2/2}\,dz=\sqrt{2\pi}\). Therefore \begin{equation*} \hat{f}( k )= \frac{\kappa}{\sqrt{2\pi\alpha}}e^{-\frac{1}{2\alpha} k ^2}. \end{equation*} Knowing complex variables one can justify it for complex \(\alpha \) with \(\Re\alpha\ge 0\); we take a correct branch of \(\sqrt{\alpha}\) (condition \(\Re\alpha\ge 0\) prevents going around origin). In particular, \((\pm i )^{\frac{1}{2}}=e^{\pm \frac{i\pi}{4}}\) and therefore for \(\alpha=\pm i\beta \) with for \(\beta >0\) we get \(f=e^{\mp\frac{i\beta}{2 }x^2}\) and \begin{equation*} \hat{f}( k )=\frac{\kappa}{2\sqrt{\pi\beta}} (1\mp i)e^{\pm\frac{i}{2\beta} k ^2}. \end{equation*}
Theorem 5. Let \(f(x)\) be a continuous function on the line \((-\infty,\infty)\) which vanishes for large \(|x|\). Then for any \(a>0\) \begin{equation} \sum_{n=-\infty}^\infty f(an) = \sum_{n=-\infty}^\infty \frac{2\pi }{a}\hat{f}(\frac{2\pi }{a}n) . \label{eq-5.2.4} \end{equation}
Proof. Observe that function \begin{equation*} g(x)= \sum_{n=-\infty}^\infty f(x+an) \end{equation*} is periodic with period \(a\). Note that the Fourier coefficients of \(g(x)\) on the interval \((-\frac{a}{2}, \frac{a}{2})\) are \(b_m=\frac{2\pi}{a}\hat{f}(\frac{2\pi}{a})\), where \(\hat{f}(k)\) is the Fourier transform of \(f(x)\).
Finally, in the Fourier series of \(g(x)\) on \((-\frac{a}{2}, \frac{a}{2})\) plug \(x = 0\) to obtain \(g(0)=\sum_m b_m\) which coincides with (\ref{eq-5.2.4}).
\(\Leftarrow\) \(\Uparrow\) \(\Downarrow\) \(\downarrow\) \(\Rightarrow\)