Existence and Uniqueness Theorem

Elements of the Real Analysis
Definition 1. Let

(i) C°[a,b]) := {f : [a,b)] — R | f is continuous} be a space of contin-
uous functions on [a,b] with a norm ||f| = maxjy |f(z)| and a distance

dist(f,9) = lf — gl = maxqy |f(x) = g(=)], f,g € C°([a, V]);

(i) CY([a,b]) == {f : [a,b] — R | df/dz exists and it is continuous} be a
space of continuously differentiable functions on [a, b];

(iii) A Cauchy sequence in a metric space (i.e. a set with a distance satisfy-
ing triangle inequality and such that dist(f, g) = dist(g, f) and dist(f, g) =
0 < [ =g) is asequence {f,},>1 such that

lim dist(f, gm) = 0.

7,M—00
(C°([a,b]) is an example of a metric space);

(iv) A complete metric space is a metric space such that for every Cauchy
sequence {fy,}n>1, there exists a point f := lim,_, f,, in that space such
that

lim dist(f,,g) = 0.
n—oo

Cauchy theorem from 1st year Calculus says that the real numbers form a
complete metric space.

Theorem 2. C°([a,b]) is complete (with respect to dist(f,g)).

Proof. Assume {g, },>1 is a Cauchy sequence in C%([a,b]). This implies that
{gn(z)}n>1 is a Cauchy sequence in R, for any = € [a,b]. By Cauchy’s
theorem, this last sequence converges to a number, which we denote with
g(x). We obtain in this way a function g defined on [a, b]. Moreover,

lim dist(g,;9) =0
n—ro0
since for any € > 0, there is N such that if m,n > N,
|gn () — gm(x)| < €/2 for all x € [a, b].
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Taking the limit for m — oo one obtains
lgn(z) — g(x)| < €/2 < e for all x € [a, b].
Finally, g is continuous: Given ¢ > 0, take NV for which
lgn(x) — g(x)] < €/3, n > N, for all z € [a,b].

Select n > N as above. Since g,(x) is continuous, one has that for any

T,y € [a'ab]70< |$_y| <§>

|90(%) — gn(y)] < €/3
for an appropriate 6 = d(¢/3) > 0. It follows immediately that

l9(z) —g(y)| <e
for 0 < |z —y| < §,z,y € [a,b], and hence g is continuous. O

Lemma 3. Let f(z,y) be a function with g—i continuous. Put

f(‘rayl)_f(xayQ) /1 af
Vf(x,y, = = —(x, +(1— ds.
f(@,y1,2) Y1 — 1 . By (z, sy1 + (1 = s)ya)ds
(1t follows from h(y;) — h(ys) = fyyf R'(t)dt by a change of variable t =

sy1 + (1= 8)ya-)

Denote o7
B = max |—(x,y)|.
el Jyl<b 8y( y)‘
Then
Vi(z,y1,92) < B for all |z|, [y, [y2] <.
Proof. Show this yourself! It is easy! m

Existence and Uniqueness theorem

Theorem 4. Let f(x,y) be continuos and g—g exist and be bounded in the
“box” |x — | < b, |y — y| < b. Then Cauchy problem

y' = fz,y), (1)

y(@) =y (2)
has a unique solution y = y(x) on interval (T — a', T + a’) with sufficiently
small a’ > 0.



Proof. Denote

A= max |f(z,y)] B =

= max
lz—2|,ly—y[<b |z—2|,ly—y|<b

of

)

and let us redefine @ = o/ = min{b/A,1/2B} (so that a- A < band a- B <
1/2).

(i) First of all we claim that (I)—(2) is equivalent to a single integral equation

y@%=ﬂ@@%=y+/%ﬂ&M$M& 3)

Really, if y satisfies — then integrating from z to x we arrive to
y(z) —y(%) = I(y)(x) and using (2) we arrive to (3). Conversely if y satisfies
then y € CY(Z — a,Z + a) (because I(y) is a continuously differentiable)
and differentiating we arrive to ; plugging x = Z into we arrive to
(1)

(ii) Note that for any y,z € C%([z — a,Z + a]) such that |y(z) — y| < b,
|z(x) — y| < b we have dist(y, z) < 2b.

(iii) I(y) defined above is a contraction, that is
dist(1(y), 1(2)) < qdist(y, 2) (4)

for some ¢ < 1. In fact, due to the lemma [3}

[(y)(x) = 1(z)(x)] = I/z Vf(s,y(s),2(5))(y(s) — 2(s))ds| < aB - dist(y, z)

and, since aB < 1/2, we can take ¢ = 1/2.

Remark 1. Tt follows from (iii) that I(g;) = g¢; for i = 1,2 implies g = go.
Show this yourself. This proves uniqueness.

(iv) Any sequence composed of yy € C°([Z — a,T + a]) with ||y(z) — g < b
(for instance yo = 0), ¥, = I(yn_1),n > 1, is a Cauchy sequence: indeed,
because ¢ = 1/2,

lim ¢" =0

n—o0

Take n(e) such that ¢" < €/2b for all n > n(e). Let m > n > n(e). Then

dist(gm, gn) = " (Ym-—n = 90| < ¢"Ym-—n — ol < ¢"2b < (€/2b) - 2b = €.



(v) By making use of theorem [2 there exists y € C°([—a,a]) such that
lim,, o dist(y,,y) = 0, and hence |y(z) — y| < b for |z — x| < a.

Since

dist(y, 1(y)) < dist(y, y,) + dist(yn, 1(y))

) ) ) 1.
= dist(y, yn) + dist (I (yn—1), I(y)) < dist(y, yn) + 3 dist(yn—1,v)

and
lim dist(y, y,) = 0= lim dist(yn_1,v),

n—0o0 n—oo

it follows dist(y, I(y)) =0, i.e. y = I(y).

Existence theorem
One can prove

Theorem 5. Let f(x,y) be continuos in the “box” |v — z| < b, |y — y| < b.
Then Cauchy problem f has a solution y = y(x) on interval (2 —a’', T+
a’) with sufficiently small ' > 0.

Sketch of the proof. Consider Euler approximations with the step h:

Ynn+1 = Yhn + f(xm yh,n)ha Ty, =1+ nh, Yno = (] (5>

and on “step” intervals (x,,z,+1) we apply a linear approximation y,(x) =
Ynn + f(Tn, Ynn)(x — x,). Here we take n = 0,1,2,... but we can go also
in the opposite direction (replacing h by —h). So, we get a piecewise linear
function y,(x).

One can prove that

(a) Functions y;(z) are defined on interval [T — a, T + a] with a redefined as
a’ = min(a,b/A) (see proof of theorem [4]) and are uniformly bounded there:

lyn(x) — 7| < b;

(b) Functions y,(z) are uniformly continuous i.e. for each € > 0 there exists
d > 0 such that |zt —2'| <d = |yn(z) —yn(2')| < € indeed, 6 = €¢/A works.
“Uniformly” here and above means that bound and ¢ do not depend on h;
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(¢) |yn(x) — I(yn)(z)| < ep for all x € [T —a,T + a] with g, — 0 as h — 0.

Let us take h,, =2™™ — +0 as m — oo.
Now we apply Arzela—Ascoli theorem from Real Analysis:

Theorem 6. From sequence of functions yp,, (v) satisfying (a)-(b) one can
select a subsequence yp,, (x) converging in C([T —a,Z+al): yp,, (z) = y(z).
Since step hy,, — 0 the limit is by no means piecewise linear!

Then obviously I(ys,, ) — I(y). Further, (c) implies that y = I(y) and
therefore y satisfies and thus it satisfies 7. O]

Remark 7. (i) In contrast to theoremtheorem@ does not imply uniqueness
of solution; indeed, example ¢y = y% analyzed in the lectures shows the lack
of uniqueness;

(ii) Both theorems [4] and [f] are based on fixed point equation y = I(y) but
existence of the fixed point y is due to different ideas: in theorem [] it exists
and is unique because map y — I(y) is contractive; in theorem @ it exists
(but is not necessarily unique) because map y — I(y) is compact (we did
not define this notion).



