Linear ODEs with constant coeflicients
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as required. O



Corollary 3. Assume that
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Then mk—];e’"jx for k =0,...,m; — 1,7 = 1,...,q are solutions of equation

L(y) = 0. There are exactly n solutions; denote them Yi,...,Y,. These
solutions are linearly independent and therefore they “generate” by linear
combination all solutions and Wy, y,y(xo) # 0.
Proof. (i) Note that for Yy, = xz*e™ /k!
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Hence Cj,_1 , = 0, as required.



