
MAT244, 2014F, Solutions to Test 1

Problem 1. Find integrating factor and then a general solution of ODE

y + (2xy − e−2y)y′ = 0 .

Also, find a solution satisfying y(1) = −2 .

Solution 1. We seek µ such tha

(µM)y = (µN)x

where M(x, y) = y and N(x, y) = 2xy − e−2y. Notice that

−My −Nx

M
= −1− 2y

y
= 2− 1

y

is independent of x. So in this case we have that

log(µ) = −
∫ (

2− 1

y

)
dy = 2y − ln(y)

hence

µ = e2y−ln(y) = e2ye− ln(y) = e2yeln(
1
y
) =

1

y
e2y.

Now after multiplying through by µ our equation becomes

e2y +

(
2xe2y − 1

y

)
y′ = 0

So

Φ(x, y) =

∫
e2ydx = xe2y + g(y)

and hence if we want

2xe2y − 1

y
=
∂Φ

∂y
(x, y) = 2xe2y + g′(y)

so

g′(y) =
−1

y

1



so
g(y) = − ln(|y|)

So the solution is of the form

xe2y − ln(|y|) = C

where c is a constant. We now use the initial conditions to determine c.
Inputting this we get:

c = (1)e(−2)(−2) − ln(|−2|) = e4 − ln(2)

Solution 2. We begin manipulating as follows (by an application of the in-
verse function theorem):

y + (2xy − e−2y)dy
dx

= 0

(2xy − e−2y)dy
dx

= −y

dy

dx
=

−y
2xy − e−2y

dx

dy
=

2xy − e−2y

−y
dx

dy
= −2x+

e−2y

y

dx

dy
+ 2x =

e−2y

y

We are viewing the above as a differential equation in x where y is now the
independent variable. We solve the above by means of an integrating factor.
So we wish to find µ so that;

dµ

dy
= 2µ

hence,
µ = e2y

so the differential equation becomes

d(e2yx)

dy
= e2y · e

−2y

y
=

1

y

so
e2yx = ln(|y|) + C
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so
xe2y − ln(|y|) = C

so inputting the initial conditions we arrive at the solution.

Problem 2. (a) Find Wronskian W (y1, y2)(x) of a fundamental set of solu-
tions y1(x), y2(x) for ODE

x3(lnx+ 1) · y′′(x)− (2 lnx+ 3)x2 · y′(x) + (2 lnx+ 3)xy(x) = 0, x > 1.

(b) Check that y1(x) = x is a solution and find another linearly independent
solution.

Solution. (a) We wish to find the Wronskian of a fundamental set of solutions
for the ODE

x3(ln(x)+1)·y′′(x)−(2 ln(x)+3)x2·y′(x)+(2 ln(x)+3)x·y(x) = 0, x > 1

so

y′′(x)− 2 ln(x) + 3

ln(x) + 1
· 1

x
· y′(x) +

2 ln(x) + 3

ln(x) + 1
· 1

x2
· 1

x2
· y(x) = 0

so p(x) = −2 ln(x)+3
ln(x)+1

· 1
x
. Thus, be Abel’s identity we can compute the Wron-

skian as follows:

W (y1, y2)(x) = e−
∫
pdx

= e
∫ 2 ln(x)+3

ln(x)+1
· 1
x
dx

= e
∫
( 2(ln(x)+1)+1

ln(x)+1
· 1
x)dx = e

∫
(2+ 1

x(ln(x)+1))dx

= e2 ln(x)+
∫

1
x(ln(x)+1)

dx

By letting u = ln(x) + 1 in the last integral we notice that du = 1
x
dx so we

get

e2 ln(x)+
∫

1
u
du = e2 ln(x)+ln(u) = eln(x

2)+ln(ln(x)+1) = eln(x
2(ln(x)+1)) = x2(ln(x) + 1)

(b) We have that y1(x) = x, y′1(x) = 1, y′′1(x) = 0. In putting this into the
differential equation we get:

x3(ln(x) + 1) · y′′1(x)−(2 ln(x) + 3)x2 · y′1(x) + (2 ln(x) + 3)x · y1(x)

= −(2 ln(x) + 3)x2 + (2 ln(x) + 3)x2

= 0

Thus, y1(x) = x is a solution to the differential equation. To find the other
solution recall that the Wronskian satisfies (after using problem 2(a) and
inputting y1(x) = x):

xy′2 − y2 = y1y
′
2 − y2y′1 −W (y1, y2) = x2(ln(x) + 1)
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so we get a differential equation for y2. Notice that by dividingby x2 we have
that: (y2

x

)′
=
xy′2 − y2

x2
= ln(x) + 1

so
y2
x

=

∫
(ln(x) + 1)dx = x ln(x)− x+ x = x ln(x)

where I have integrated by parts to solve the integral. This tells us that;

y2(x) = x2 ln(x)

is another solution to the differential equation.

Problem 3. Find the general solution for equation

z′′(t)− z′(t)− 6z(t) = −6 + 10e−2t.

Solution. To find the general solution to the equation

z′′ − z′ − 6z = −6 + 10e−2t

we must first find the general solution to the homogeneous equation. Letting
z(t) = ert leads to the following equation:

0 = r2 − r − 6 = (r − 3)(r + 2)

so the solutions are r = 3 and r = −2. Thus, the general solution to the
homogeneous problem is given by c1e

3t + c2e
−2t. To complete the problem

we simply have to find a particular problem to the inhomogeneous problem.
Notice that if we let z(t) = At+B where we wish to determine A and B so
that z′′ − z′ − 6z = −6 then we get

−6At− (A+)[−A− 6BAt− 6B = −6

hence A = 0 and B = 1. Thus, we get that z = 1 is a particular solution
to z′′ − z′ − 6z = −6. If we can find a solution to z′′ − z′ − 6z = 10e2t

then we will have completed the question by adding the general solution to
the previous two particular solutions. Notice that the Wronskian ig given
by W (y1, y2)(t) = −2et − 3et = −5et and so by the method of variation of
parameters we have that;

u1(t) = −
∫
e−2t(10e−2t)

−5et
dt = 2

∫
e−5t =

−2

5
e−5t

and

u2(t) =

∫
e3t(10e−2t)

−5et
dt = −2

∫
1dt = −2t
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and hence the particular solution is given by

u1y1 + u2y2 =
−2

5
e−5te3t + (−2t)e−2t = −2e2t − 2e−2t

5
.

Since linear combinations of the solutions to the homogeneous equation re-
main solutions to the homogeneous equation then we may ignore the factor
−2e−2t

t
. Hence, a particular solution to z′′ − z′ − 6z = 10e−2t is given by

−2te−2t. Thus, a the general solution to z′′ − z′ − 6z = 1 − 10e−2t is given
by:

z(t) = c1e
3t + c2e

−2t + 1− 2te2t

Problem 4. Find a particular solution of

x2y′′(x)− 6y(x) = 10x−2 − 6, x > 0.

Solution. Let t = ln(x) then we convert the differential equation into one
where the independent variable is t. Notice that:

dy

dx
=
dy

dt
· dt
dx

=
1

x

dy

dt
= e−t

dy

dt

and
d2y

dt2
= (−e−t)(e−t)dy

dt
+ (e−t)(e−t)

d2y

dt2
= e−2t

d2y

dt2
− e−2tdy

dt

Putting this information into the differential equation we get that

10e−2t − 6 = 10x−2 − 6 = x2
d2y

dx2
− 6y

= e2t
(
e−2t

d2y

dt2
− e−2tdy

dt

)
− 6y =

d2y

dt2
− dy

dt
− 6y

Notice that htis is the same differential equation we encountered in Prob-
lem 3. Thus, a particular solution is given by:

1− 2te−2t

Converting back to x-coordinates we get:

1− 2x−2 ln(x)
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