Methods of Integration

Reminder

There are two universal methods of integration:

o Substitution
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e By parts

Rational Functions
Elementary Fractions

The simplest are (we skip +const)
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and we can calculate s, I3, ... recurrently.




General Rational Functions

Consider
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where Py, (), Q,(z) are the polynomials of degrees m and n > 1 and the main coefficient
in @Q,(x)is 1.

Step 1 If m < n go to Step 2. Else we divide P,, by @), with the remainder:

(8) Pr(2) = Sp-n(2)Qu(@) + Tov (2)

with m’ <n —1 and
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Step 2 So m < n. We can decompose polynomial @, (x) into product

(10) Qu(x) =[x = a7 x [T (=) +¢)"

Jj=p+1

where a; are distinct real roots of @, b; £ ic; are distinct non-real roots of @,,, ¢; > 0 and
r; is the multiplicity of the corresponding root.

Then one can decompose g,:((;c; with m < n — 1 into elementary fractions:
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with unknown constant coefficients Ay, Bjx, Cj.

Step & We find these coefficients from equation
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Note that are ploynomials of degrees

k
<n-—1.
Check that the total number of the coefficients is n.

Remember that substitution of a; into equation (12) is a good idea.

Step 4 Now after coefficients are found we can integrate all the elementary fractions in (11).



Trigonometric Polynomials

Trigonometric polynomial is P(cosz,sinx) = > am,cos™ zsin”z. To integrate
trigonometric polynomial one needs to be able to integrate trigonometric monomials
cos™ xsin” x with m >0, n > 0.

We however can consider also negative m,n but outputs is not necessarily good.

m = 2p,n = 2q Then cos® v = (1 + cos(2x)), sin* z = 3(1 — cos(2x)) and we get
%(1 + cos(2z))" (1 — cos(2z))*

and lowered degree m + n.

m = 2p+ 1 Then
/cost+1 sin” z dx = /cosszsin”:cdsin:c = /(1 — 22)P2"dz

after substitution z = sin z.

n = 2q + 1 Then
/cos” sin®t g do = —/cos”xsianxdcosx =— /(1 — 221" dz

after substitution z = cos z.

m=2m+ 1, n =2+ 1 We can use any of theses substitutions.

Trigonometric Rational Functions

Trigonometric rational function is the ratio of two trigonometric polynomials:

R(cosz,sinx) =

P(cosz,sinx)
Q(cosx,sinz)’

Our purpose is to reduce it to integral of rational function.

R(u,v) is an even function with respect to u and v: R(u,v) = Ry(u? v?). We apply
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we arrive to integral
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e R(u,v) is an odd function with respect to u: R(u,v) = Ri(u? v)u. We apply substi-
tution z = sinx and we arrive to integral:

/Rl(cos2 x,sinx) cosx dr = /Rl <1 — 22, z) dz.

e R(u,v) is an odd function with respect to v: R(u,v) = Ry(u,v?)v. We apply substi-
tution z = cosx and we arrive to integral:

/Rl(cos z,sin’ z) sinw dr = — /R1 (z, 1— 22) dz.

e General case There is an universal substitution z = tan 3; however special substitu-
tions above are better if applicable.
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5 so we arrive to integral
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Special Irrational Functions. I

We consider functions of the type
F(z) = R(z,+/Q(x)), Q quadratic polynomial.
Our purpose is to reduce to the integral of trigonometric rationalfunction.

By shift one can reduce Q to either 2% + ¢, or 22 — %, or ¢ — 22 with ¢ > 0 (excluding

case 2 when we get piece-wise rational function.

o Q= 22 + 2. Possile substitution: x = ctan z, then we get

/R<$7\/m>dx:c/R<csinz © ) dz

cosz cosz/ cos?z

e O = 22+ % Another possile substitution: = csinh 2z, then we get

/R(x, \/m> dr = c/ R(csinh z, ccosh z) cosh z dz.

o Q= 12? — % Possile substitution: = csec z, then we get

¢ csinz\ sinz
R(x, :1:2—02> dr =c R( , > 2
cosz’ cosz /cosdz




e O =12%— % Another possile substitution: x = ccosh z, then we get

/R(m, x? — 02> dr = c/ R(c cosh z, ¢sinh z) sinh z dz.

o Q= c? — 22 Possile substitution: x = csin z, then we get

/R(:L‘, \/cz—sc?) dxzc/R(csinz,ccosz) cos zdz

e Q= c?> — 2% Another possile substitution: = ctanh z, then we get
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Special Irrational Functions. II

Now we consider

/R(w, Z(:L‘)l/m> dx, Z(z) = jij:?,

with ad — be # 0 (otherwise Z = const). This integral is calculated by substitution Z(z) =

0zm — o —
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