
THE UNBOUNDED DENOMINATORS CONJECTURE

FRANK CALEGARI, VESSELIN DIMITROV, AND YUNQING TANG

Abstract. We prove the unbounded denominators conjecture in the theory of noncongruence

modular forms for finite index subgroups of SL2(Z). Our result includes also Mason’s generaliza-

tion of the original conjecture to the setting of vector-valued modular forms, thereby supplying
a new path to the congruence property in rational conformal field theory. The proof involves a

new arithmetic holonomicity bound of a potential-theoretic flavor, together with Nevanlinna’s

second main theorem, the congruence subgroup property of SL2(Z[1/p]), and a close description
of the Fuchsian uniformization D(0, 1)/ΓN of the Riemann surface C r µN .
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1. Introduction

We prove the following:

Theorem 1.0.1 (Unbounded Denominators Conjecture). Let N be any positive integer, and let
f(τ) ∈ ZJq1/N K for q = exp(πiτ) be a holomorphic function on the upper half plane. Suppose there
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exists an integer k and a finite index subgroup Γ ⊂ SL2(Z) such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), ∀

(
a b
c d

)
∈ Γ,

and suppose that f(τ) is meromorphic at the cusps, that is, locally extends to a meromorphic
function near every cusp in the compactification of H/Γ. Then f(τ) is a modular form for a
congruence subgroup of SL2(Z).

The contrapositive of this statement is equivalent to the following, which explains the name
of the conjecture: if f(τ) ∈ QJq1/N K is a modular form which is not modular for some congru-
ence subgroup, then the coefficients of f(τ) have unbounded denominators. The corresponding
statement remains true if one replaces Q by any number field (see Remark 6.3.1).

Let λ(τ) be the modular lambda function (Legendre’s parameter):

λ(τ)

16
=

(
η(τ/2)η(2τ)2

η(τ)3

)8

= q

∞∏
n=1

(
1 + q2n

1 + q2n−1

)8

= q − 8q2 + · · ·(1.0.2)

with q = eπiτ and η(τ/2) = q1/24
∏∞
n=1(1 − qn). (Historic conventions force one to use q for

both eπiτ and e2πiτ — we use the first choice unless we expressly state otherwise.) On replacing
the weight k form f by the weight zero form f(τ)(λ(τ)/16η(τ/2)2)k, we may (and do) assume
that k = 0. The function f is then an algebraic function of λ, with branching only at the three
punctures λ = 0, 1,∞ of the modular curve Y (2) ∼= P1 r {0, 1,∞}. Thus another reading of our
result states that the Bely̆ı maps (étale coverings)

π : U → CP1 r {0, 1,∞} := Spec C[λ, 1/λ, 1/(1− λ)] = Y (2)

possessing a formal Puiseux branch in ZJλ(τ/m)/16K ⊗ C for some m ∈ N are exactly the con-
gruence coverings YΓ = H/Γ→ H/Γ(2) = Y (2), with Γ ranging over all congruence subgroups of
Γ(2). The reverse implication follows from [Shi71, Theorem 3.52], and reflects the fact that the q-
expansions of eigenforms on congruence subgroups are determined by their Hecke eigenvalues (see
also [Kat73, §1.2]).

We refer the reader to Atkin and Swinnerton-Dyer [ASD71] for the roots of the unbounded
denominators conjecture, and to Birch’s article [Bir94] as well as to Long’s survey [Lon08, § 5] for
an introduction to this problem and its history. For the vector-valued generalization, see §7.3 and
its references below. The cases of relevance to the partition and correlation functions of rational
conformal field theories (of which the tip of the iceberg is the example (1.0.3) discussed below)
were resolved in a string of works [DR18, DLN15, SZ12, NS10, Xu06, Ban03, Zhu96, AM88], by the
modular tensor categories method. Some further sporadic cases of the unbounded denominators
conjecture have been settled by mostly ad hoc means [FF20, FM16b, LL12, KL08, KL09].

To give some simple examples, the integrality property 8
√

1− x ∈ ZJx/16K corresponds to the
fact that the modular form (λ/16)1/8 = q1/8

∏∞
n=1(1 + q2n)(1 + q2n−1)−1 and the affine Fermat

curve x8 +y8 = 1 are congruence; whereas a simple non-example [Lon08, § 5.5] is the affine Fermat
curve xn+yn = 1 for n /∈ {1, 2, 4, 8}, for which the fact that its Fuchsian group is a noncongruence
arithmetic group is detected arithmetically by the calculation n

√
1− x /∈ ZJx/16K⊗C. This recovers

a classical theorem of Klein [KF17, page 534]. To include an example related to two-dimensional
rational conformal field theories, consider the following function (with q = e2πiτ ):

(1.0.3) j(τ)1/3 = q−1/3 1 + 240
∑∞
n=1 σ3(n)qn∏∞

n=1(1− qn)8
= q−1/3(1 + 248q + 4124q2 + 34752q3 + · · · ).

The resulting Fourier coefficients are closely linked to the dimensions of the irreducible representa-
tions of the exceptional Lie group E8(C), and in particular they are integers. To be more precise:
the modular function j1/3 coincides with the graded dimension of the level one highest-weight

representation of the affine Kac–Moody algebra E
(1)
8 ; see Gannon’s book [Gan06, page 196] for a

broad view on this topic and its relation to mathematical physics. The unbounded denominators
conjecture (Theorem 1.0.1) now implies that j1/3 must be a modular function on a congruence
subgroup, and indeed one may easily confirm that it is a Hauptmodul for the level 3 subgroup
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which is the kernel of the composite PSL2(Z) → PSL2(F3) = A4 → Z/3Z. One final example is
the function

h :=
λ(τ)(1− λ(τ))

16
=

(
η(τ/2)η(2τ)

η(τ)2

)24

of level Γ0(2) ⊃ Γ(2); here the complete list of n for which h1/n is either congruence modular or
has bounded denominators are the divisors of 24. One may even compute that the abelianization

of the congruence completion Γ̂0(2) of Γ0(2) (where Γ0(2) is considered as a subgroup of PSL2(Z))
is Z/24Z⊕ Z/2Z. (The other Z/2Z extension corresponds to

√
1− 64h = 1− 2λ.)

In a similar vein pertaining to the examples from the representation theory of vertex operator
algebras, we prove in our closing section 7 the natural generalization of Theorem 1.0.1 to com-
ponents of vector-valued modular forms for SL2(Z), in particular resolving — in a sharper form,
in fact — Mason’s unbounded denominators conjecture [Mas12, KM08] on generalized modular
forms.

1.1. A sketch of the main ideas. Our proof of Theorem 1.0.1 follows a broad Diophantine
analysis path known in the literature (see [Bos04, Bos13] or [Bos20, Chapter 10]) as the arithmetic
algebraization method.

1.1.1. The Diophantine principle. The most basic antecedent of these ideas is the following easy
lemma:

Lemma 1.1.1. A power series f(x) =
∑∞
n=0 anx

n ∈ ZJxK which defines a holomorphic function
on D(0, R) for some R > 1 is a polynomial.

Lemma 1.1.1 follows upon combining the following two obsevations, fixing some 1 > η > R−1:

(1) The coefficients an are either 0 or else ≥ 1 in magnitude.
(2) The Cauchy integral formula gives a uniform upper bound |an| = o(ηn).

We shall refer to the first inequality as a Liouville lower bound, following its use by Liouville in
his proof of the lower bound |α− p/q| � 1/qn for algebraic numbers α 6= p/q of degree n ≥ 1. We
shall refer to the second inequality as a Cauchy upper bound, following the example above where it
comes from an application of the Cauchy integral formula. The first non-trivial generalization of
Lemma 1.1.1 was Émile Borel’s theorem [Bor94]. Dwork famously used a p-adic generalization of
Borel’s theorem in his p-adic analytic proof of the rationality of the zeta function of an algebraic
variety over a finite field (see Dwork’s account in the book [DGS94, Chapter 2]). The simplest
non-trivial statement of Borel’s theorem is that an integral formal power series f(x) ∈ ZJxK must
already be a rational function as soon as it has a meromorphic representation as a quotient of
two convergent complex-coefficients power series on some disc D(0, R) of a radius R > 1. The
subject of arithmetic algebraization blossomed at the hands of many authors, including most
prominently Carlson, Pólya, Robinson, D. & G. Chudnovsky, Bertrandias, Zaharjuta, André,
Bost, Chambert-Loir [CL02, BCL09, Ami75], [And04, § I.5], [And89, § VIII]. A simple milestone
that we further develop in our § 2 is André’s algebraicity criterion [And04, Théorème 5.4.3],
stating in a particular case that an integral formal power series f(x) ∈ ZJxK is algebraic as
soon as the two formal functions x and f admit a simultaneous analytic uniformization — that
means an analytic map ϕ : (D(0, 1), 0) → (C, 0) such that the composed formal function germ
f(ϕ(z)) ∈ CJzK is also analytic on the full disc D(0, 1), and such that ϕ is sufficiently large in terms
of conformal size, namely: |ϕ′(0)| > 1. For example, for any integer m, the algebraic power series
f = (1 − m2x)1/m ∈ ZJxK admits the simultaneous analytic uniformization x = (1 − eMz)m−2

and f = eMz/m, where the conformal size |ϕ′(0)| = M/m2 can clearly be made arbitrarily large
by making a suitable choice of M .

A common theme of all these generalizations of Lemma 1.1.1 is that they come down to a
tension between a Liouville lower bound and a Cauchy upper bound. For example, in the proof of
Borel’s theorem ([Ami75, Ch 5.3]), the Liouville lower bound is applied not to the coefficients an
themselves but rather to Hankel determinants det |αi,j | with αi,j = ai+j+n. To consider a more
complicated example (much closer in both spirit and in details to our own analysis), to prove
André’s algebraicity criterion [And04, Théorème 5.4.3], one wants to prove that certain powers
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of a formal function f(x) ∈ ZJxK are linearly dependent over the polynomial ring Z[x]. (It will
be advantageous to consider functions in several complex variables x = (x1, . . . , xd).) The idea is
now to consider a certain Z[x] linear combination F (x) of powers of f(x) chosen such that they
vanish to high order at 0 but yet the Z[x] coefficients p(x) are themselves not too complicated —
the existence of such a choice follows from the classical Siegel’s lemma. Now the Liouville lower
bound is applied to a lowest order non-zero coefficient of F (x) ∈ ZJxK. Note that such a coefficient
must exist or else the equality F (x) = 0 realizes f(x) as algebraic. The Cauchy upper bound in
this case once again follows by an application of the Cauchy integral formula.

In our setting, the Liouville lower bound ultimately comes down to the integrality (“bounded
denominators”) hypothesis on the Fourier coefficients of f(τ), while the Cauchy upper bound
comes down to studying the mean growth behavior m(r, ϕ) :=

∫
|z|=r log+ |ϕ|µHaar of the largest

(universal covering) analytic map ϕ : D(0, 1)→ C r µN avoiding the N -th roots of unity. These
are clearly distinguished in our abstract arithmetic algebraization work of § 2 as the steps (2.4.1)
and (2.3.10), respectively. Our Theorem 2.0.2 is effectively a quantitative refinement of André’s
algebraicity criterion to take into account the degree of algebraicity over Q(x), and still more
precisely a certain holonomy rank over Q(x). Foreshadowing a key technical point (to be discussed
in more detail later in the introduction), our Cauchy upper bound is given in terms of a mean
(integrated) growth term rather than a supremum term, and this improvement is essential to our
approach.

1.1.2. Modularity and simultaneous uniformizations of f and λ. Let us now explain the relevance
of arithmetic holonomy rank bounds to the unbounded denominator conjecture. After reducing
to weight k = 0 as above, the functions f = f(τ) and x := λ(τ)/16 ∈ q + q2ZJqK are algebraically
dependent and share both (we assume) the property of integral Fourier coefficients at the cusp
q = 0. Let us assume for the purpose of this sketch that f(τ) ∈ ZJqK with q = eπiτ , i.e. that the
cusp i∞ has width dividing 2. Then the formal inverse series expansion

q = x+ 8x2 + 91x3 + · · · ∈ x+ x2ZJxK

of (1.0.2) has integer coefficients, expressing the identity ZJqK = ZJxK of formal power series rings,
and that formal substitution turns our integral Fourier coefficients hypothesis into an algebraic
power series with integer coefficients: henceforth in this introductory sketch we switch to writing,
by a mild and harmless notational abuse, simply f(x) ∈ ZJxK in place of f(τ) and λ(q) in place
of (1.0.2). In the general case of arbitrary cusp width, which we need anyhow for the inner workings
of our proof even if one is ultimately interested in the ZJqK case, we will only have f ∈ Z[1/N ]JxK
— but there is still a hidden integrality property which we can exploit. That leads to some mild
technical nuance with the power series (2.0.3) — think of t = q1/N , x(t) = N

√
λ(tN )/16 and

p(x) = xN — in our refinement (2.0.4) of André’s theorem.
The complex analysis enters by way of a linear ODE in the following way. To start with, we

have, just by fiat, the simultaneous analytic uniformization of the two functions x = λ/16 and f
by the complex unit q-disc |q| < 1. In this way, the tautological choice ϕ(z) := λ(z)/16 turns our
algebraic power series f(x) ∈ ZJxK into a boundary case (unit conformal size ϕ′(0) = 1) of André’s
criterion. Another boundary case, but this time transcendental and incidentally demonstrating the
sharpness of the qualitative André algebraicity criterion even in the a priori holonomic situation
(see [And04, Appendix, A.5] for a discussion), is provided by the Gauss hypergeometric function

F (x) := 2F1

[
1/2 1/2

1
; 16x

]
=

∞∑
n=0

(
2n

n

)2

xn ∈ ZJxK,

whose unit-radius simultaneous analytic uniformization with x = λ/16 is given again by the
analytic q coordinate, and the classical Jacobi formula

2F1

[
1/2 1/2

1
;λ(q)

]
=
(∑
n∈Z

qn
2
)2

which transforms this hypergeometric series into a weight one modular form for the congruence
group Γ(2).
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1.1.3. A finite local monodromy leads to an overconvergence. It turns out, and this is the key to
our method and already answers André’s question in [And04, Appendix, A.5], that a different
choice of ϕ(z) allows one to arithmetically distinguish between these two cases (algebraic and
transcendental), and to have the algebraicity of f(x) recognized by André’s Diophantine criterion
by way of an “overconvergence.” The common feature of these two functions f(x) and F (x) —
coming respectively out of modular forms of weights 0 and 1 — is that they both vary holonomically
in x ∈ Cr {0, 1/16}: they satisfy linear ODEs with coefficients in Q[x] and no singularities apart
from the three punctures x = 0, 1/16,∞ of Y (2) = H/Γ(2). The difference feature is that their
respective local monodromies around x = 0 are finite for the case of f(x) (a quotient of Z/N ,
with the order N equal to the LCM of cusp widths, or Wohlfahrt level [Woh64] of f(x)); and
infinite for the case of F (x) (isomorphic to Z, corresponding more particularly to the fact that
this particular hypergeometric function acquires a log x term after an analytic continuation around
a small circle enclosing x = 1/16). If now we perform the variable change x 7→ xN , redefaulting to

x := N
√
λ(qN )/16, that resolves the N -th root ambiguity in the formal Puiseux branches of f(x)

at x = 0, and the resulting algebraic power series f(xN ) ∈ ZJxN K ⊂ ZJxK has turned holonomic
on P1 r {16−1/NµN ,∞}: singularities only at 16−1/NµN ∪ {∞} (but not at x = 0: this key
step of exploiting arithmetic algebraization is the same as in Ihara’s arithmetic connectedness
theorem [Iha94, Theorem 1], which together with Bost’s extension [Bos99] to arithmetic Lefschetz
theorems have in equal measure been inspirational for our whole approach to the unbounded
denominators conjecture). Since λ : D(0, 1) → C r {1} has fiber λ−1(0) = {0}, the function

ϕ(z) := N
√
λ(zN )/16 : D(0, 1)→ C r 16−1/NµN is still holomorphic on the unit disc |z| < 1, and

under this tautological choice, both functions f(xN ) and F (xN ) continue to be at the borderline
of André’s algebraicity criterion: |ϕ′(0)| = 1.

But if instead of the tautological simultaneous uniformization we take ϕ : D(0, 1) → C r
16−1/NµN to be the universal covering map (pointed at ϕ(0) = 0), then either by a direct compu-
tation with monodromy, or by Cauchy’s analyticity theorem on the solutions of linear ODEs with
analytic coefficients and no singularities in a disc, we have both function germs x := ϕ(z) and
f(x) := f(ϕ(z)) holomorphic, hence convergent, on the full unit disc D(0, 1). In contrast, now
F (ϕ(z)) converges only up to the “first” nonzero fiber point in ϕ−1(0)r{0}, giving a certain radius
rather smaller than 1. We must have the strict lower bound |ϕ′(0)| > 1, because the preceding

unit-radius holomorphic map N
√
λ(zN )/16 : D(0, 1) → C r 16−1/NµN has to factorize properly

through the universal covering map. Indeed in Theorem 5.3.8, using an explicit description by
hypergeometric functions of the multivalued inverse of the universal covering map of C r µN
based on Poincaré’s ODE approach [Hem88] to the uniformization of Riemann surfaces, we find
an exact formula for this uniformization radius in terms of the Euler Gamma function.1 Hence
the algebraicity of f(x) gets witnessed by André’s criterion; and the formal new result that we
get already at this opening stage (see Theorem 7.2.1) is that any integral formal power series
solution f(x) ∈ ZJxK to a linear ODE L(f) = 0 without singularities on P1 r {0, 1/16,∞} is
in fact algebraic as soon as the linear differential operator L has a finite local monodromy Z/N
around the singular point x = 0. More than this: the quantitative Theorem 2.0.2 proves that the
totality of such f(x) ∈ ZJxK at a given N span a finite-dimensional Q(x)-vector space, and gives
an upper bound on its dimension as a function of the Wohlfahrt level parameter N . Now since
a (noncongruence) counterexample f(τ) ∈ ZJqK to Theorem 1.0.1 would not exist on its own but
entail a whole sequence f(τ/p) ∈ ZJq1/pK of Q(x)-linearly independent counterexamples at grow-
ing Wohlfahrt level N 7→ Np, our idea is to measure up the supply of these putative (fictional)
counterexamples alongside the congruence supply at a gradually increasing level until together
they break the quantitative bound (2.0.4) supplied by our arithmetic holonomy Theorem 2.0.2.

1.1.4. The dimension bound can be leveraged with growing level N . We have the congruence supply
of dimension [Γ(2) : Γ(2N)] � N3, and then as a glance at our shape (2.0.4) of holonomy
rank bound readily reveals, it seems a fortuitous piece of luck that the conformal size (Riemann

1André pointed out to us that this explicit formula has previously been obtained by Kraus and Roth, see [KR16,
Remark 5.1].
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uniformization radius at 0) of our relevant Riemann surface Cr 16−1/NµN turns out to have the
matching asymptotic form 1+ζ(3)/(2N3)+O(N−5). We “only” have to prove that the numerator
(growth) term in the holonomy rank bound (2.0.4) inflates at a slower rate than our extrapolating
putative counterexamples f(τ) 7→ f(τ/p)!

The meaning of the requisite inflation rate is clarified in § 4, with Proposition 4.2.5 and Re-
mark 4.2.8. It turns out that the logarithmically inflated holonomy rank (dimension) bound by
O(N3 logN) is sufficient for the desired proof by contradiction (but an O(N3+1/ log logN ) or worse
form of bound would not suffice); and this is what we ultimately prove. Getting to this degree
of precision creates however some additional challenges. A straightforward elaboration of André’s
original argument in [And89, Criterium VIII 1.6], taking the number of variables d → ∞ and
involving the sup|z|=r log |ϕ| growth term of loc.cit. in place of our mean (integrated) growth term

m(r, ϕ) in (2.0.4), leads quite easily to an O(N5) dimension bound; and by a further work explicitly
with the cusps of the Fuchsian uniformization D(0, 1)/ΓN ∼= CrµN , and an appropriate Riemann
map precomposition, it is possible to further reduce that down to an O(N4). See Remark 5.5.8.
This does not suffice to conclude the proof. Going further requires an intrinsic improvement into
André’s dimension bound itself: the reduction of the supremum term to the integrated term in the
numerator of (2.0.4). We achieve this in § 2.2 by an asymptotic equidistribution idea (all under
d → ∞), of a familiar potential-theoretic flavor similar to the proof of Bilu’s equidistribution
theorem [Bil97]. The resulting potential-theoretic connection is in the cross-variables asymptotic
aspect and different than the well-established link (see [Bos99, BCL09, Bos04]) of arithmetic al-
gebraization to adelic potential theory.

1.1.5. Nevanlinna theory for Fuchsian groups. Everything is thus reduced to establishing a uniform
integrated growth bound of the form

(1.1.2) m(r, FNN ) :=

∫
|z|=r

log+ |FNN |µHaar = O
(

log
N

1− r

)
,

where N ≥ 2 and FN : D(0, 1) → C r µN is the universal covering map based at FN (0) = 0.
Heuristically this is supported by the idea that the renormalized function FN (q1/N )N “converges”
in some sense to the modular lambda function λ(q), as N → ∞. These functions do indeed
converge as q-expansions as N → ∞ on any ball around the origin of radius strictly less than 1.
The problem is that this convergence is not in any way uniform as r → 1, but we need to use (1.1.2)
with a radius as large as r = 1−1/(2N3). The growth of the map FN is governed by the growth of
the cusps of the (N,∞,∞) triangle Fuchsian group ΓN , and studying these directly, for instance
by comparing them to the cusps of the limit (∞,∞,∞) triangle group Γ(2), proves to be difficult.

Surprisingly perhaps, we are instead able in § 6 to prove the requisite mean growth bound (1.1.2)
on the abstract grounds of Nevanlinna’s value distribution theory for general meromorphic func-
tions. For any universal covering map F : D(0, 1)→ Cr {a1, . . . , aN} of a sphere with N + 1 ≥ 3
punctures, one has the mean growth asymptotic m(r, F ) =

∫
|z|=r log+ |F |µHaar ∼ 1

N−1 log 1
1−r

under r → 1−, providing extremal examples of Nevanlinna’s defect inequality with N + 1 full
deficiencies on the disc [Nev70, page 272]. Contrast this with the qualitatively exponentially
larger growth behavior sup|z|=r log |F | � 1

1−r of the crude supremum term. In our particular

situation of {a1, . . . , aN} = µN for the puncture points, we are able to exploit the fortuitous re-

lation
∏N
i=1(x− ai)

∑N
i=1

1
x−ai = NxN−1 particular to the partial fractions decomposition (6.1.2)

to get to the uniformity precision of (1.1.2) with the method of the logarithmic derivative in
Theorem 6.0.1.

2. The arithmetic holonomicity theorem

Our proof relies on the following dimension bound which is an extension of André’s arithmetic
algebraicity criterion [And04, Théorème 5.4.3]. We state and prove our result here in a particular
case suited to our needs. Firstly we introduce an algebra of holonomic power series with integral
coefficients and restricted singularities.
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Definition 2.0.1. For U ⊂ C an open subset, R ⊂ C a subring, and x(t) ∈ tQJtK a formal power
series, we define H(U, x(t), R) to be the ring of formal power series f(x) ∈ (R ⊗Z Q)JxK whose
t-expansion f(x(t)) ∈ RJtK, and such that there exists a nonzero linear differential operator L over
C(x), without singularities on U , with L(f) = 0.

For x(t) = t, we simply denote this ring by H(U,R).

Throughout our paper, we will use the notation

T := {e2πiθ : θ ∈ [0, 1)} ⊂ C×

for the unit circle, the Cartesian power

Td := {(e2πiθ1 , . . . , e2πiθd) : θ1, . . . , θd ∈ [0, 1)} ⊂ Gd
m(C)

for the unit d-torus, and

µHaar := dθ1 · · · dθd
for the normalized Haar measure of this compact group.

Our holonomy bound is the following. The novel point is an equidistribution argument, of a
potential-theoretic flavor, for achieving the integrated term instead of a supremum term in the
bound (2.0.4) below. This is critical for our proof of the unbounded denominators conjecture
to have the growth term in (2.0.4) expressed as a Nevanlinna mean proximity function (or a
characteristic function).

Theorem 2.0.2. Let 0 ∈ U ⊂ C be an open subset containing the origin. If the uniformization
radius of the pointed Riemann surface (U, 0) is strictly greater than 1, then the algebra H(U,Z)⊗
Q(x) has a finite dimension as a Q(x)-vector space.

More precisely, let p(x) ∈ Q(x) r Q be a non-constant rational function without poles in U ,

and let ϕ(z) : D(0, 1)→ U a holomorphic map taking ϕ(0) = 0 with |ϕ′(0)| > 1. If

(2.0.3) x(t) ∈ t+ t2QJtK

has p(x(t)) ∈ ZJtK, then the following dimension bound holds on H(U, x(t),Z) over Q(p(x)):

dimQ(p(x))

(
H(U, x(t),Z)⊗Q(p(x))

)
≤ e ·

∫
T

log+ |p ◦ ϕ|µHaar

log |ϕ′(0)|
,(2.0.4)

where e = 2.718 . . . is Euler’s constant.

Proof. Our approach rests on the remark that ϕ∗H(U, x(t),Z) ⊂ ϕ∗H(U,C) lies in the ring of
formal power series fulfilling linear differential equations with analytic coefficients and no singu-
larities on the closed disc D(0, 1) and hence, by Cauchy’s theorem, it is contained by the ring

O(D(0, 1)) of holomorphic functions on D(0, 1).

2.1. The auxiliary construction. We will make a use of a Diophantine approximation con-
struction in a high number d→∞ of variables x := (x1, . . . , xd). We will write

xj := xj11 · · ·x
jd
d , p(x) := (p(x1), . . . , p(xd)).

We consider f1, . . . , fm ∈ QJxK an m-tuple of Q(p(x))-linearly independent functions in the
space H(U, x(t),Z), and proceed to establish the holonomy bound

(2.1.1) m ≤ e ·
∫
T

log+ |p ◦ ϕ|µHaar

log |ϕ′(0)|
.

Lemma 2.1.2. Let d, α ∈ N and κ ∈ (0, 1) be parameters. Asymptotically in α→∞ as d and κ
are held fixed, there exists a nonzero d-variate formal function F (x) of the form

F (x) =
∑

i∈{1,...,m}d

k∈{0,...,D−1}d

ai,k p(x)k
d∏
s=1

fis(xs) ∈ QJxK r {0},(2.1.3)

vanishing to order at least α at x = 0, with
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(1)

D ≤ 1

(d!)1/d

1

m

(
1 +

1

κ

) 1
d

α+ o(α);

(2) all ai,k ∈ Z are rational integers bounded in absolute value by exp
(
κCα+ o(α)

)
for some

constant C ∈ R depending only on maxu/∈U 1/|u| and on the degree and height of the
rational function p(x) ∈ Q(x).

Proof. We expand our sought-for formal function in (2.1.3) into a formal power series in QJxK
and solve

(
α+d
d

)
∼ αd/d! linear equations in the (mD)d free parameters ai,j. By the formal inverse

function expansion, the integrality condition p(x(t)) ∈ ZJtK entails that x(t) ∈ t + t2ZJt/MK for
some M ∈ N bounded in terms of the degree and height of the rational function p(x). The result
then follows from the classical Siegel lemma [BG06, Lemma 2.9.1], with the degree parameter
choice

D ∼ 1

m(d!)1/d

(
1 +

1

κ

) 1
d

α,

that brings in a Dirichlet exponent ∼ κ as α→∞. That F 6≡ 0 follows since at least one ai,j 6= 0
and the formal functions f1, . . . , fm ∈ QJxK are linearly independent over Q(p(x)). �

2.2. Equidistribution. The key idea now is that upon substituting xj = ϕ(zj) into (2.1.3), the
d→∞ equidistribution on the circle of the uniform independent and identically distributed points
z1, . . . , zd will normally get the constituent monomials in (2.1.3) to grow at most at the integrated
exponential rate of dD

∫
T

log+ |p ◦ ϕ|µHaar. It is this Monte Carlo (randomized numerical inte-
gration) principle that makes possible the integrated growth term — as opposed to the cruder
and rather more straightforward supremum growth term, compare to [And89, VIII 1.6] — in our
holonomy rank bound (2.0.4). Having

∫
T

log+ |p ◦ ϕ|µHaar instead of sup|z|=1 log |p ◦ ϕ| in (2.0.4)
is a critical step in our proof of the unbounded denominators conjecture.

To carry out this program, we employ in § 2.4 André’s method [And89, And04] of extrapolating
with the function

(2.2.1) F (x(t)) := F (x(t1), . . . , x(td)) ∈ ZJtK r {0},

whose integrality of coefficients follows from Lemma 2.1.2 and our defining assumptions that
p(x) ∈ ZJtK while all fi(x(t)) ∈ ZJtK. This integrality is the key to the Liouville lower bound.
For the Cauchy upper bound, in counterpoint, we would need a pointwise upper bound on the
intervening functions |p(ϕ(z))k| on the unit polycircle z ∈ Td, and here the problem is that while
the Monte Carlo heuristic applies on the majority of Td under d→∞, with a probability tending
to 1 roughly speaking at a rate exponential in −d (this follows by Hoeffding’s concentration
inequality with (2.2.8) below), the peaks at the biased part of Td get overwhelmingly large, and
a direct extrapolation from (2.2.1) still only leads to a dimension bound with sup|z|=1 log |p ◦ ϕ|.

To improve the supremum term to the mean term
∫
T

log+ |p ◦ ϕ|µHaar, our new idea is to

dampen the size at the peaks by firstly multiplying (2.1.3) by a suitably chosen power V (z)M of
the Vandermonde polynomial

(2.2.2) V (z) :=
∏
i<j

(zi − zj) = det


1 z1 z2

1 · · · zd−1
1

1 z2 z2
2 · · · zd−1

2
...

...
... · · ·

...

1 zd z2
d · · · zd−1

d

 ∈ Z[z1, . . . , zd] r {0}.

By applying the Hadamard volume inequality to the Vandermonde determinant in (2.2.2), we
recover the following classical result of Fekete, crucial for our approach.

Lemma 2.2.3 (Fekete). The supremum of |V (z)| =
∏

1≤i<j≤d |zi − zj | over the unit polycircle

z ∈ Td is equal to dd/2, with equality if and only if the points z1, . . . , zd are the vertices of a regular
d-gon.
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The idea for sifting out the equidistributed tuples (z1, . . . , zd) is the following. If the points
z1, . . . , zd are poorly distributed in the uniform measure of the circle, the quantity |V (z)| is
uniformly exponentially small in −d2 (Lemma 2.2.9 below). This plays off against the dd/2 =
exp(o(d2)) bound of Lemma 2.2.3 to sift out the equidistributed points in our pointwise upper
bound in the Cauchy integral formula when we extrapolate in § 2.4 below. Liouville’s Diophantine
lower bound still succeeds like in André [And04], thanks to the chain rule and the integrality
property of coefficients of (2.2.2), but at the Cauchy upper bound we are now aided by the fact
that V (z)M is extremely small (an exponential in −Md2, see (2.2.10)) at the peaks of the point-
wise Cauchy bound, where the point (z1, . . . , zd) is poorly distributed, while still not too large
(subexponential in Md2, thanks to Lemma 2.2.3) uniformly throughout the whole polycircle Td.

In the remainder of the current section, we spell out the notion of ‘well-distributed’ and ‘poorly
distributed’, and supply the key equidistribution property for the numerical integration step. The
following is the standard notion of discrepancy theory.

Definition 2.2.4. The (normalized, box) discrepancy function D : Td → (0, 1] is the supremum
over all circular arcs I ⊂ T of the defect between the normalized arclength of I and the proportion
of points falling inside I:

D(z1, . . . , zd) := sup
I⊂T

∣∣µHaar(I)− 1

d
#{i : zi ∈ I}

∣∣.
We also recall the basic properties of the total variation functional on the circle. In our situation,

all that we need is that log+ |h| is of bounded variation for an arbitrary C1 function h : T → R.
Then Koksma’s estimate permits us to integrate numerically. All of this can be alternatively
phrased in the qualitative language of weak-∗ convergence.

Definition 2.2.5. The total variation V (g) of a function g : T→ R is the supremum over all

partitions 0 ≤ θ1 < · · · < θn < 1 of
∑n−1
j=1 |g(e2π

√
−1θj+1)− g(e2π

√
−1θj )|.

Thus, for g ∈ C1(T), we have the simpler formula

(2.2.6) V (g) =

∫
T

|g′(z)|µHaar(z), g ∈ C1(T).

We have V (log+ |h|) < ∞ for h ∈ C1(T), and Koksma’s inequality (see for example Drmota–
Tichy [DT97, Theorem 1.14]):

(2.2.7)
∣∣∣1
d

d∑
j=1

g(zj)−
∫
T

g µHaar

∣∣∣ ≤ V (g)D(z1, . . . , zd).

In practice the discrepancy function is conveniently estimated by the Erdös–Turán inequality (cf.
Drmota–Tichy [DT97, Theorem 1.21]):

(2.2.8) D(z1, . . . , zd) ≤ 3
( 1

K + 1
+

K∑
k=1

1

k

∣∣∣zk1 + · · ·+ zkd
d

∣∣∣) ∀K ∈ N,

in terms of the power sums. Here we note in passing that, by (2.2.8) and the Chernoff tail
bound or the Hoeffding concentration inequality (see, for example, Tao [Tao12, Theorem 2.1.3
and Ex. 2.1.4]), we have that for any fixed ε > 0, the probability of the event D(z1, . . . , zd) ≥ ε
decays to 0 exponentially in −d as d → ∞. This last remark has purely a heuristic value for our
next step, and is not used in the estimates in itself (but rather shows that these estimates are
sharp).

Thus we introduce another parameter ε > 0, which in the end will be let to approach 0
but only after d → ∞, and we divide the points z ∈ Td into two groups according to whether
D(z1, . . . , zd) < ε (the well-distributed points) or D(z1 . . . , zd) ≥ ε (the poorly distributed points).
For the well-distributed group we use the Koksma inequality (2.2.7), and for the poorly distributed
group we take advantage of the overwhelming damping force of the Vandermonde factor.

The following is essentially Bilu’s equidistribution theorem [Bil97], in a mild disguise.
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Lemma 2.2.9. There are functions c(ε) > 0 and d0(ε) ∈ R such that, for every ε ∈ (0, 1], if
d ≥ d0(ε) and (z1, . . . , zd) ∈ Td is a d-tuple with discrepancy D(z1, . . . , zd) ≥ ε, then

(2.2.10) |V (z1, . . . , zd)| =
∏

1≤i<j≤d

|zi − zj | < e−c(ε)d
2

.

Proof. Since the qualitative result suffices for our purposes here, we give a soft proof based on
compactness. The following argument borrows from Bombieri and Gubler’s exposition [BG06,
page 103] of Bilu’s equidistribution theorem. Suppose to the contrary that there is an ε ∈ (0, 1]

and an infinite sequence (z
(d)
1 , . . . , z

(d)
d ) ∈ Td such that

(2.2.11) lim
d→∞

1(
d
2

) ∑
1≤i<j≤d

log
1

|z(d)
i − z

(d)
j |
≤ 0,

but

(2.2.12) ∀d, D(z
(d)
1 , . . . , z

(d)
d ) ≥ ε.

By the Banach–Alaoglu theorem of the compactness of the weak-∗ unit ball of C(T)∗, we may
extract a subsequence of the sequence of normalized Dirac masses δ{z(d)1 ,...,z

(d)
d }

that converges

weak-∗ to some limit probability measure µ of the unit circle. By continuity of the discrepancy
functional, (2.2.12) implies that the limit discrepancy

D(µ) := sup
I⊂T

∣∣µHaar(I)− µ(I)
∣∣ ≥ ε.

In particular, µ is not the uniform measure µHaar.
On the other hand, it is a well-known theorem from potential theory that every compact

K ⊂ C admits a unique probability measure µK , called the equilibrium measure, that minimizes
the Dirichlet energy integral

I(ν) :=

∫∫
K×K

log
1

|z − w|
ν(z) ν(w)

across all probability measures ν supported by K. By symmetry, we have µT = µHaar, and since
I(µHaar) = 0, but µ 6= µHaar, we have the strict inequality

(2.2.13) I(µ) =

∫∫
T×T

log
1

|z − w|
µ(z)µ(w) > 0.

If the measure µ is continuous (that is, the measure of a point is 0, or equivalently the diagonal
of T × T has µ × µ measure 0), then the positive energy (2.2.13) contradicts (2.2.11) by weak-∗
convergence. In more detail, take a continuous function φ : [0,∞) → [0,∞) to have φ|[0,1/2] ≡ 0
and φ|[1,∞) ≡ 1, and let φη(t) := φ(t/η) for 0 < η ≤ 1. Then, since φη(t) < 1 implies log (1/t) > 0
while φη(t) ≤ 1 always, assumption (2.2.11) implies

lim
d→∞

1(
d
2

) ∑
1≤i<j≤d

φη
(
|z(d)
i − z

(d)
j |
)

log
1

|z(d)
i − z

(d)
j |
≤ 0

leading by weak-∗ convergence to the non-positivity∫∫
T×T

φη(|x− y|) log
1

|z − w|
µ(z)µ(w) ≤ 0,

for every η ∈ (0, 1]. Since the diagonal has measure 0, this runs in contradiction with (2.2.13)
upon letting η → 0.

If instead the measure µ is not continuous, then there is a point a ∈ T and a positive constant
c > 0 such that, for any η > 0, and any d �η 1 sufficiently large, there are at least cd points

among {z(d)
1 , . . . , z

(d)
d } in the neighborhood |z − a| < η/2. The contribution to (2.2.11) from all

these pairs of points is alone ≥ c2 log(1/η), and since the total contribution from any subset of the
points is in any case ≥ − log 2, we get again in contradiction with (2.2.11) on letting η → 0. �
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2.3. Damping the Cauchy estimate. We combine Lemmas 2.2.3 and 2.2.9 for our choice of
the damping term V (z)M . In the following, all asymptotics are taken under α→∞ with respect
to all other parameters.

By Lemma 2.1.2 and our defining assumption that all fi(ϕ(z)) are holomorphic on some neigh-
borhood of the closed unit disc |z| ≤ 1, we have uniformly on the polycircle z ∈ Td the pointwise
bound

log |F (ϕ(z1), . . . , ϕ(zd))| ≤ D
d∑
j=1

log+ |p(ϕ(zj))|+ κCα+ o(α).(2.3.1)

Since the function log+ |p ◦ ϕ| : T → R is of finite variation V (log+ |p ◦ ϕ|) < ∞, Koksma’s
estimate (2.2.7) yields, on the well-distributed part z ∈ Td, the uniform pointwise upper bound

D(z1, . . . , zd) < ε =⇒

log |F (ϕ(z1), . . . , ϕ(zd))| ≤ dD
∫
T

log+ |p ◦ ϕ|µHaar + κCα+Op,ϕ(ε dD) + o(α).

The implicit constant in Op,ϕ(ε dD) can be taken as the total variation V (log+ |p ◦ ϕ|); that this
error term is oε→0(dD) = oε→0(α) is all that matters to us in the asymptotic argument.

On the poorly distributed but exceptional part D(z1, . . . , zd) ≥ ε, the sum in (2.3.1) can get as
large as d sup|z|=1 log |p ◦ ϕ|. This trivial bound gives

(2.3.2) ∀z ∈ Td, log |F (ϕ(z1), . . . , ϕ(zd))| ≤ dD sup
|z|=1

log+ |p ◦ ϕ|+ κCα+ o(α).

We now impose the condition

(2.3.3) d ≥ d0(ε), for the function d0(ε) in Lemma 2.2.9,

for the remainder of the proof of Theorem 2.0.2 (at the end we will firstly take d→∞, and only
then ε→ 0), and we select the Vandermonde exponent

(2.3.4) M :=
⌊ sup|z|=1 log+ |p ◦ ϕ|

c(ε)

D

d

⌋
,

with c(ε) the function from Lemma 2.2.9. We are now in a position to usefully estimate the
supremum of |V (z)MF (ϕ(z))| uniformly across the unit polycircle z ∈ Td, by separately examining
the well-distributed and the poorly distributed cases of z.

On the poorly distributed part D(z1, . . . , zd) ≥ ε, Lemma 2.2.9 with (2.3.2), (2.3.3) and (2.3.4)
gives

(2.3.5) sup
z∈Td:D(z1,...,zd)≥ε

log |V (z)MF (ϕ(z))| � κα.

On the well-distributed part D(z1, . . . , zd) ≤ ε, we have

sup
z∈Td:D(z1,...,zd)≤ε

log |V (z)MF (ϕ(z))|(2.3.6)

≤ dD
∫
T

log+ |p ◦ ϕ|µHaar + κCα+Op,ϕ(εα) +Oε,p,ϕ

( log d

d
α
)

+ o(α).

by (2.3.4) and Lemma 2.2.3.
Consider the holomorphic function

(2.3.7) H(z) := V (z)MF (ϕ(z1), . . . , ϕ(zd)) =:
∑

n∈Nd
0

c(n) zn ∈ CJzK,

convergent on the closed unit disc ‖z‖ ≤ 1. For each n ∈ Nd
0, the zn coefficient of H(z) is given

by the Cauchy integral formula

(2.3.8) c(n) =

∫
Td

H(z)

zn
µHaar(z),



12 F. CALEGARI, V. DIMITROV, AND Y. TANG

entailing the Cauchy upper bound

(2.3.9) ∀n ∈ Nd
0, |c(n)| ≤ sup

z∈Td

|H(z)|.

On combining the bounds (2.3.6), on the well-distributed part of Td, and (2.3.5), on the poorly
distributed part of Td, we arrive at our damped Cauchy estimate:

log |c(n)| ≤ dD
∫
T

log+ |p ◦ ϕ|µHaar(2.3.10)

+O(κα) +Op,ϕ(ε α) +Oε,p,ϕ

( log d

d
α
)

+ o(α),

asymptotically under α→∞.

2.4. The extrapolation. We can now easily finish the proof of Theorem 2.0.2 by combining the
degree estimate (1) of Lemma 2.1.2 with the Cauchy bound (2.3.10) and the integrality properties
of the functions F (x(t)) ∈ ZJtK of (2.2.1) and V (z) ∈ Z[z] of (2.2.2).

Let β ≥ α be the exact order of vanishing of F (x) at the origin x = 0. Among the nonvanishing
monomials cxn of this minimal order |n| = β, choose the one whose degree vector n has the
highest lexicographical ordering. By the chain rule and the minimality of |n|, the normalization
condition (2.0.3) on the formal substitution x(t) entails that c tn is a minimal order term in the
t-expansion F (x(t)). Hence the integrality property (2.2.1) gives that c ∈ Z r {0} is a nonzero
rational integer.

Consider now our product function H(z) = V (z)MF (ϕ(z)) ∈ CJzK. In the factor V (z)M , it is

z
(d−1)M
1 z

(d−2)M
2 · · · zMd−1 that has the highest lexicographical ordering. Consequently, by the chain

rule again,

c ϕ′(0)β z
n1+(d−1)M
1 z

n2+(d−2)M
2 · · · znd

d

exhibits a monomial in V (z)MF (ϕ(z)) of the minimal order β + M
(
d
2

)
; for

(
n1 + (d− 1)M,n2 +

(d− 2)M, . . . , nd
)

has the strictly highest lexicographical ordering across all monomials of degree

β +M
(
d
2

)
in V (z)MF (ϕ(z)).

We have thus found a nonzero coefficient of H(z) ∈ CJzK that belongs to the Z-module ϕ′(0)βZ,
where β ≥ α. Thus the Cauchy upper bound (2.3.9) is supplemented with the Liouville lower
bound

(2.4.1) ∃n ∈ Nd
0 : log |c(n)| ≥ β log |ϕ′(0)| ≥ α log |ϕ′(0)|.

We get the requisite holonomy rank bound (2.1.1) on combining the degree bound (1) of Lemma 2.1.2
with the Cauchy upper bound (2.3.10) and the Liouville lower bound (2.4.1), and letting firstly
α→∞, then d→∞, then κ→ 0, and finally ε→ 0.

This completes the proof of Theorem 2.0.2. �

Remark 2.4.2. André pointed out to us an alternative, and arguably simpler path to the proof
of Theorem 2.0.2. His variation is to replace our use of the maximum modulus principle for
V (z)MF (ϕ(z)) by the plurisubharmonic property of log |z−n1

1 F (ϕ(z))|, with n1 being the lowest
partial degree of x1 in F (x). Such a procedure turns out to work well if we consider, in place of the
leading order jet, instead the overall (possibly of a higher total degree |n| > β) lexicographically
lowest monomial cxn in F (x). In this way, the equidistribution part of the proof can be bypassed,
and the rest of the argument goes through unchanged. We plan to give further details in a
subsequent work and explore the added flexibility of the lexicographically lowest monomial. (We
have kept the original argument with the thought that it may have ideas useful in other settings.)

Remark 2.4.3. The result is more general, and the restriction here to ZJtK expansions was chosen as
minimal for our application to noncongruence modular forms. In a sequel work we will generalize
our integrated holonomy rank bound, in particular to the case of QJtK formal functions, and study
its applications to transcendence theory. With regard to the latter, it is of some interest to inquire
about the optimal numerical constant that could take the place of the coefficient e in (2.0.4).
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3. Some reductions

The following encapsulates our argument:

Proposition 3.0.1. Let FN : D(0, 1)→ CrµN be an analytic universal covering map sending 0
to 0. Suppose that:

(1) The conformal radius |F ′N (0)| of FN is asymptotically at least

161/N

(
1 +

A

N3

)
for some constant A > 0.

(2) For a fixed B > 0, the following mean value bound holds on the circle |z| = 1−BN−3:∫
|z|=1−BN−3

log+ |FN |µHaar �B
logN

N
.

Then the ring R2N of modular functions with bounded denominators and cusp widths dividing 2N
has dimension at most CN3 logN over the ring of modular functions of level Γ(2), for some
absolute constant C.

Proof. Let t := q1/N = eπiτ/N . We use Theorem 2.0.2 with U := C r 16−1/NµN , p(x) := xN and

x := (λ(τ)/16)1/N ∈ t+ t2Z[1/N ]JtK,(3.0.2)

with the Kummer integrality condition p(x) = xN ∈ ZJqK = ZJtN K ⊂ ZJtK being in place. The
integrality and cusp widths conditions in the definition of the ring R2N entail that for every
f ∈ R2N , if m� 1 is large enough so that λmf is holomorphic at all cusps in Γ(2) · i∞, then the
formal expansion xNm · f(x) ∈ QJxK belongs to the ring H(U, x(t),Z) ⊗Z Q. It thus suffices to
bound the Q[xN ]-dimension of the latter ring by CN3 logN .

We take r := 1−AN−3/2 and

ϕ(z) := 16−1/NFN (rz) : D(0, 1)→ U.

By (1) and the choice of radius r = 1−AN−3/2, we have

log |ϕ′(0)| > log (1 +A/N3) + log r = AN−3/2 +OA(N−6).(3.0.3)

Thus, with c := A/3, we get for N � 1 sufficiently large that

(3.0.4) log |ϕ′(0)| > cN−3.

Theorem 2.0.2 now upper-bounds our requisite dimension as

dimQ(xN )

(
H(U, x(t),Z)⊗Q(xN )

)
≤ e ·

∫
|z|=1−A/(2N3)

log+ |FNN |µHaar

cN−3
.

The bound by O(N3 logN) now results follows from (2) with the choice B := A/2. �

We prove both of the required statements in Theorems 5.3.8 and Theorem 6.0.1 respectively.
We then put up the CN3 logN dimension bound supplied by Proposition 3.0.1 for the ring RN
of all modular functions against the obvious � N3 lower bound for the subring of the congruence
examples from the fact that [Γ(2) : Γ(2N)]� N3 (see Equation 4.2.2). Hence we have:

3.1. A summary. This lays out exactly what we need to prove in order to at least get the
unbounded denominators conjecture up to a “small error” (a logarithmic gap O(logN) in every
level N). The following is then a summary of the rest of our paper:

(1) In §4, we prove that the logarithmic gap between the ring of modular forms with bounded
denominators and the ring of congruence modular forms can be leveraged to prove the full
unbounded denominators conjecture. The main idea here is that given a noncongruence
modular form f(q) ∈ ZJq1/N K, one can construct many more such forms independent over
the congruence ring, by considering f(q1/p) ∈ ZJq1/NpK for primes p.
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(2) In §5, we study the properties of the function FN . It turns out more or less to be related to
a Schwarzian automorphic function on a (generally non-arithmetic) triangle group. This
allows us to compute the conformal radius of FN exactly (see Theorem 5.3.8), and indeed
it has the form 161/N

(
1 + (ζ(3)/2)N−3 + · · ·

)
.

(3) In §5, we also study the maximum value of |FN | on the circle |z| = R, uniformly in both N
and R < 1. The main idea here is that a normalized variant function GN (q) = FN (q1/N )N

“converges” to the modular λ function λ(q) = 16q−128q2 +· · · . Approximating the region
where FN is large by the corresponding region for λ(q) one predicts a growth rate of the
desired form. However, the problem is that the convergence of GN (q) to λ(q) is not in any
way uniform, especially in the neighbourhoods of the cusps of FN which certainly vary
with N .

(4) In §6 we solve this uniformity problem on the abstract grounds of Nevanlinna theory.
We combine the crude growth bound on |FN | with a version of Nevanlinna’s lemma on
the logarithmic derivative to prove our requisite uniform upper estimate on the mean
proximity function m(r, FN ) =

∫
|z|=r log+ |FN |µHaar.

(5) Putting all the pieces together, the proof of Theorem 1.0.1 is then completed in §6.3.

4. Noncongruence forms

4.1. Wohlfahrt Level. We being by recalling a notion of level for noncongruence subgroups due
to Wohlfahrt [Woh64]. Let G ⊂ SL2(Z). If γ ∈ G is any parabolic element, then γ is conjugate
in SL2(Z) to a power Um of the matrix

(4.1.1) U =

(
1 1
0 1

)
.

Definition 4.1.2 ([Woh64]). The level L(G) of G is the lowest common multiple of m as γ
ranges over all parabolic γ which generate the stabilizer of some cusp of G — equivalently, over
all parabolic γ which are not non-trivial powers of some other parabolic element.

We begin with some elementary properties concerning this definition. We typically only consider
groups containing −I since we are secretly interested in subgroups of PSL2(Z).

Lemma 4.1.3. If G and H both contain −I and have L(G) and L(H) dividing N , then any cusp
of G ∩H also has cusp width dividing N .

Proof. The stabilizer of a cusp inside any subgroup of SL2(Z) containing −I is Z/2Z × Z. In
particular, if G contains the group aZ and H contains bZ then G ∩ H contains lcm(a, b)Z, and
the result follows. �

Corollary 4.1.4. Let G ⊂ SL2(Z) be a finite index subgroup containing −I with Wohlfahrt

level N . Let G̃ be the intersection of the conjugates of G by SL2(Z), so G̃ is a normal subgroup

of SL2(Z) contained in G. Then G̃ has level N .

Definition 4.1.5. Let A denote the following matrix:

(4.1.6) A :=

(
p 0
0 1

)
.

(We use this notation so as to be consistent with that of Serre in [Tho89] which we follow
below.) We now prove the following lemma concerning how the level of a subgroup changes under
conjugation by A.

Lemma 4.1.7. Let H ⊂ SL2(Z) have L(H) = N . Then H̃ := A−1HA ∩ SL2(Z) has L(H̃)
dividing Np.

Proof. Any unipotent element in H̃ is conjugate by A to a unipotent element in H, which is a
power of a minimal unipotent element γ ∈ H. We may write

γ = B

(
1 n
0 1

)
B−1
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with n|N , and B =

(
a b
c d

)
∈ SL2(Z). We have

γ̃ := (A−1BA)

(
1 n/p
0 1

)
(A−1BA)−1,

where (A−1BA) =

(
a b/p
cp d

)
. We consider two cases:

(1) Suppose that (a, p) = 1. Since (a, c) = 1 we have (a, pc) = 1. Hence we may write

γ̃ = (A−1BA)

(
1 n/p
0 1

)
(A−1BA)−1 = C

(
1 n/p
0 1

)
C−1,

where

C =

(
a e
cp f

)
∈ SL2(Z) such that A−1BA = C

(
1 h/p
0 1

)
, h ∈ Z,

for any suitable choice of e, f and h. We now have

(γ̃)p = C

(
1 n
0 1

)
C−1 ∈ SL2(Z)

and thus in H̃, and hence the cusp width at this cusp divides N and hence also Np.
(2) Suppose that p|a, so p does not divide c, so a/p and c are co-prime integers. Now take

C =

(
a/p b
c pd

)
= (A−1BA)

(
p 0
0 1/p

)
∈ SL2(Z).

Then

γ̃ = (A−1BA)

(
1 n/p
0 1

)
(A−1BA)−1 = C

(
1 np
0 1

)
C−1,

and so the cusp width divides Np. �

4.2. Modular Forms. For an even integer N , we are considering the following rings of modular
functions with rational coefficients and bounded denominators, that is, subrings of Q⊗ ZJq1/N K.

Definition 4.2.1.

(1) Let MN denote the ring of holomorphic modular functions on Y (N) with coefficients in Q.
(2) Let RN denote the ring of holomorphic modular functions with coefficients in Q, bounded

denominators, and cusp widths dividing N .

Our goal is to prove that RN = MN . We can and do assume that N is even. We have M2 =
Q[λ±1, (1 − λ)±1] with function field Q(λ). The Q(λ)-vector space of functions generated by
elements of RN is finite dimensional. (We will later verify the assumptions of Proposition 3.0.1;
note in any case that the crude finiteness [RN : M2] <∞ has already been proved from Theorem
2.0.2 and the remark that the conformal radius of C r 16−1/NµN is strictly larger than 1.) It
follows that all elements of RN are invariant under a subgroup GN of SL2(Z) containing −I which
has finite index. In particular, RN is a subring of the holomorphic functions on the corresponding
curve and so finitely generated over M2. If A is any finitely generated M2-module, we write [A :
M2] = [A⊗Q(λ) : Q(λ)]. Since M2 has trivial Picard group, this is actually equivalent to A being
free of this rank (although we do not use this fact).

There are injective algebra maps M2 → MN → RN , where the degree of the first inclusion is
given for 2|N by the explicit formula

(4.2.2) [MN : M2] =
1

2
[Γ(2) : Γ(N)] =

N3

2[SL2(Z) : Γ(2)]

∏
p|N

(
1− 1

p2

)
>

N3

12ζ(2)
.

Since modular forms on Y (N) have bounded denominators, we furthermore have [RN : M2] =
[RN : MN ] · [MN : M2]. It follows that we have a bound:

(4.2.3) [RN : MN ] ≤ 12ζ(2)[RN : M2]

N3
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for all N . The key leveraging step is contained in the following theorem:

Theorem 4.2.4. Suppose that there exists an N such that [RN : MN ] > 1. Then, for every
prime p not dividing N , one has

[RNp : MNp] ≥ 2[RN : MN ].

The proof of this theorem is in the next section 4.3 below. However, we now explain why
Theorem 4.2.4 together with a sufficiently good bound on [RN : M2] implies the unbounded
denominators conjecture.

Proposition 4.2.5. Suppose that there exists a constant C and a bound

[RN : M2] ≤ CN3 logN

for all even integers N . Then RN = MN for every N , that is, the unbounded denominators
conjecture holds.

Proof. Assume there exists an N such that RN 6= MN . Let S denote the set of primes < X which
are co-prime to N . By induction, Theorem 4.2.4 implies for such an N that

(4.2.6) [RN
∏

p∈S p
: MN

∏
p∈S p

] ≥ [RN : MN ]2#S > 2(1−ε)X/ logX ,

by the prime number theorem. This quantity certainly increases faster than any power of X. On
the other hand, from the assumed bound on [RN : M2] together with the bound (4.2.3), we obtain

(4.2.7)

[RN
∏

p∈S p
: MN

∏
p∈S p

] ≤ 12Cζ(2) log

N ∏
p∈S

p


= 12Cζ(2) logN + 12Cζ(2)

∑
p∈S

log p < 12Cζ(2)X(1 + ε).

Combining the bounds (4.2.6) and (4.2.7) gives

2(1−ε)X/ logX < 12Cζ(2)X(1 + ε)

which (by some margin!) is a contradiction for sufficiently large X. �

Remark 4.2.8. The argument still works with a bound weaker than [RN : M2] � N3 logN ,
although [RN : M2]� N3+ε would not be strong enough.

4.3. The proof of Theorem 4.2.4. We now put ourselves in the situation of Theorem 4.2.4.
That is, we have RN is strictly larger than MN . Recall that forms in RN are all invariant by
a subgroup G = GN ⊂ Γ(N). By definition, all forms in RN have cusp width dividing N , and
thus GN has level N in the sense of Wohlfahrt. We may assume that −I ∈ G. By Corollary 4.1.4,
we may replace G by a normal subgroup G of finite index of SL2(Z) containing −I which also has
finite index. Let p be a prime with (N, p) = 1.

The main idea of this section is to exploit the fact that if f(τ) ∈ ZJq1/N K ∈ RN , then f(τ/p) ∈
ZJq1/NpK is also a modular form with integer coefficients for any prime p. Since the form f(τ) is
invariant under G, the form f(τ/p) is invariant under AGA−1 and thus also the group AGA−1 ∩
SL2(Z). Now, by Lemma 4.1.7, we know that this group has (Wohlfahrt) level dividing Np. In
particular f(τ/p) has cusp width dividing Np at each cusp, and hence f(τ/p) ∈ RNp. Let RNMNp

denote the ring generated by forms in RN and MNp, which is contained in RNp. We have

[RNp : MN ] = [RNp : RNMNp][RNMNp : MN ] = [RNp : RNMNp][RN : MN ][MNp : MN ],

because the forms in MNp and RN lie in disjoint Galois extensions of (the field of fractions of) MN .
Thus

[RNp : MNp]

[RN : MN ]
= [RNp : RNMNp]

is an integer, and it is either ≥ 2, in which case we have proven Theorem 4.2.4, or RNp = RNMNp.
In particular, in order to prove Theorem 4.2.4 we may assume that RNp is generated by RN
and MNp, and in particular that f(τ/p) is invariant under the group G ∩ Γ(Np). This implies
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that f(τ/p) it is invariant under both AGA−1 ∩ SL2(Z) and G ∩ Γ(Np). We will exploit an idea
due to Serre that shows G and AGA−1 are in some sense “far apart” when G is not a congruence
subgroup. We first prove a preliminary lemma.

Lemma 4.3.1. Let G ⊂ SL2(Z) be a not-necessarily congruence subgroup of SL2(Z) with level N
in the sense of Definition 4.1.1. Let H be the group generated by AGA−1 ∩ SL2(Z) together
with G ∩ Γ(Np). Then H contains G ∩ Γ(N) ∩ Γ0(p).

Proof. There are maps

(4.3.2) ψG, ψH : G,H → SL2(Z)→ SL2(Z/Np).

The kernel of ψG is equal to G ∩ Γ(Np), which is contained in H by definition. Hence to show
that G ∩ Γ(N) ∩ Γ0(p) is contained in H it suffices to show that the image of ψH contains the
image of G ∩ Γ(N) ∩ Γ0(p). Since G has finite index inside SL2(Z) and level N , it contains the
matrices (

1 N
0 1

)
,

(
1 0
N 1

)
,

and these generate the projection of SL2(Z/Np) onto SL2(Fp). Hence the image of G ∩ Γ(N)

under ψG is precisely the matrices γ =

(
a b
c d

)
mod Np congruent to I mod N . Now consider a

matrix

(4.3.3)

(
a bp
c d

)
mod Np

inside SL2(Z/Np) which is congruent to I mod N . These are precisely the matrices is in the
image of G ∩ Γ(N) ∩ Γ0(p), and our task is to show such matrices also lies the image of H. We
first observe that the matrix

(4.3.4)

(
a b
cp d

)
mod Np

also lies in SL2(Z/Np) (the determinant is unchanged) and is congruent to the identity modulo N
since (N, p) = 1. Thus it lies in the image of G. Let γ denote any lift to G; clearly the lower left
entry is divisible by p. Hence

AγA−1 =

(
a bp
c d

)
∈ AGA−1

lies in SL2(Z), and thus inH. This shows that the image ofH contains the image ofG∩Γ(N)∩Γ0(p)
and we are done. �

Since G is normal, we may define the group S by taking S = Γ̃(N)/G. By construction, the

group S is finite. There are two homomorphisms f1 and f2 from Γ̃(N) ∩ Γ0(p) to S defined by:

(1) The inclusion map: f1 : Γ̃(N) ∩ Γ0(p)→ Γ̃(N)→ S,
(2) The map f2 = f1(AxA−1).

Lemma 4.3.5 (Serre). The map (f1, f2) : Γ̃(N) ∩ Γ0(p)→ S × S is surjective.

Proof. This follows as in the proof of [Tho89, Theorem 3] with the addition of Γ̃(N) level struc-
ture (See [Ber94] for the modification in the presence of level structure). The main idea is as
follows: if (f1, f2) is not surjective, there exists (by Goursat’s lemma) a non-trivial quotient ∆
of S and projections πi : S → ∆ such that the composites π1 ◦ f1 and π2 ◦ f2 agree. This implies

that there exists a non-trivial map on the amalgamated product of Γ̃(N) and AΓ̃(N)A−1 along
their intersection to ∆ of S, and this amalgamated product may be identified with the level N
congruence subgroup of SL2(Z[1/p]). But this latter group has the congruence subgroup prop-

erty [Men67, Ser70]. This implies that the kernel K ⊇ G of the map map Γ̃(N)→ Γ̃(N)/G→ ∆
is a proper congruence subgroup, but this contradicts the assumption that the level of G is N . �

Note that
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(1) ker(f1) = G ∩ Γ0(p).
(2) ker(f2) = A−1GA ∩ Γ0(p).

Let K be the group generated by ker(f1) and ker(f2). Since (f1, f2) is surjective, the image
contains the elements (x, 0) and (0, y) for any x ∈ S. But the pre-images of these elements clearly
lie in ker(f2) and ker(f1) respectively, and thus lie in K. But then the pre-image of any element
lies in K, and we deduce that

(4.3.6) G ∩ Γ0(p) +A−1GA ∩ Γ0(p) = Γ̃(N) ∩ Γ0(p).

We now consider the function f(τ/p), which is obtained from f(τ) by acting by A−1. As
explained at the beginning of § 4.3, we deduce that f(τ/p) is invariant under both AGA−1∩SL2(Z)

and G ∩ Γ̃(Np). But now conjugating by A−1 (to bring f(τ/p) back to f(τ)) we deduce from
Lemma 4.3.1 that f(τ) is invariant under the group

A−1(G ∩ Γ0(p))A = A−1GA ∩ Γ0(p).

But it is also invariant under G, and hence tautologically under G∩ Γ0(p). By equation (4.3.6) it

is thus also invariant under Γ̃(N)∩Γ0(p), which is to say invariant under a congruence subgroup,
which was to be shown.

5. The uniformization of C r µN

In this section we develop all the particular analytic properties that we need of the universal
covering map FN : D(0, 1) → C r µN . André has pointed out to us that our two main results
here, Theorem 5.3.8 and Lemma 5.5.7, appear in work of Kraus and Roth [KR16, Remark 5.1 and
Theorems 1.2 and 1.10]. Nevertheless, as our proofs are simplified to cover our current needs, and
since the results of Kraus and Roth rely on some previous work of themselves and others, we keep
our self-contained exposition as a convenience to the reader, and refer to [ASVV10, KRS11, KR16]
and the references there for various further results and a more thorough study of the uniformization
of C r µN .

Remark 5.0.1 (A word on notation). We denote by H the upper half plane and by P1 = C∪{∞}
the complex projective line or Riemann sphere. There is a conformal isomorphism from the
disc D(0, 1) to H by the formula

x 7→ i · 1 + x

1− x
.

This allows one to pass freely between uniformizations by D(0, 1) and H. In this section, we
choose notation so that the corresponding passage from D(0, 1) to H is marked by the addition of

a tilde. Thus, for example, F̃N constructed below denotes a map on H and FN (Definition 5.1.1)

is simply the pull-back of F̃N to D(0, 1) via the map above. Similarly, ΓN will denote a lattice

in U(1, 1) whereas Γ̃N denotes the corresponding lattice in PSL2(R).

Let N ≥ 2 be an integer. Then CrµN = P1 r{∞, µN} is the complement of at least 3 points,
and thus admits a complex uniformization map:

F̃N : H→ H/Γ̃N = C r µN .

The map F̃N is unique up to the action of PSL2(R) on the source — we pin down some precise
choices in §5.1, but the analysis of this subsection will not depend on any such choices.

We have a companion uniformization map 1/F̃N : H → P1 r {0, µN}. We now derive the

Schwarzian derivative of the inverse map (of 1/F̃N and then of F̃N ) following [Hem88]. (The reason

for first considering the reciprocal of F̃N is that the standard form considered in [Hem88] is for
maps to P1rS where S is a finite set of points which does not contain∞.) Let mk for k = 1 . . . N
denote the accessory parameters at z = pk = ζk = e2πik/N , and let m0 denote the accessory
parameter at z = p0 = 0. Exactly as in [Hem88, Example 1], the accessory parameters mk
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for k 6= 0 satisfy the symmetry mk = c · ζ−k for some constant c. The accessory parameters are
subject to three constraints, given by ([Hem88, Theorem 3.1])

(5.0.2)

N∑
k=0

mk = 0,

N∑
k=0

2mkpk + 1 = 0,

N∑
k=0

mkp
2
k + pk = 0.

From the first constraint, we deduce from the fact that
∑N
k=1mk = 0 that m0 = 0. But now from

the second constraint in equation (5.0.2), we deduce that

N∑
k=0

(2mkζ
k + 1) = 1 +

N∑
k=1

(2c+ 1) = 0

and hence c = − 1
2 −

1
2N . Writing Z = 1/FN (τ), we deduce from [Hem88, Theorem 3.1] that the

Schwarzian {τ, 1/FN} is given by

{τ, 1/FN} = {τ(Z), Z} :=

((τ ′′
τ ′

)′
− 1

2

(
τ ′′

τ ′

)2
)

(Z) =
1

2

N∑
k=0

1

(Z − pk)2
+

N∑
k=0

mk

Z − pk

=
1

2Z2
+

1

2

N∑
k=1

1

(Z − ζk)2
− (1 +N)

2N

N∑
k=1

ζ−k

Z − ζk
=

(1 + (N2 − 1)ZN )

2Z2(ZN − 1)2
.

From the chain rule, we deduce that with z = FN = 1/Z the equality:

{τ, FN} =
1

z4

(1 + (N2 − 1)(1/z)N )

2(1/z)2((1/z)N − 1)2
=

(N2 − 1)zN−2 + z2N−2

2(zN − 1)2
.

By [Hem88, Lemma 3.3], if η1 and η2 are solutions to the equation y′′ + 1
2{τ, FN}y = 0, or

equivalently

(5.0.3) 4(zN − 1)2y′′ + ((N2 − 1)zN−2 + z2N−2)y = 0

then the (locally analytic) inverse map ψN of F̃N is the ratio η1/η2 up to a Möbius transfor-
mation (equivalently, up to the correct choice of linearly independent solutions). We find that
equation (5.0.3) admits solutions

(5.0.4) η1 = 1− (N + 1)zN

4N
+ · · · ∈ QJzN K,

(5.0.5) η2 = z − (N − 1)zN+1

4N
+ · · · ∈ z ·QJzN K,

the inclusions following in an elementary way from the Frobenius method applied to (5.0.3).

5.1. Normalizations of F̃N . Using the action of PSL2(R) we may assume that F̃N (i∞) = 1.

The stabilizer of ∞ consists of Möbius transformations z 7→ az+ b, so by specifying F̃N (0) = 0 we

determine F̃N uniquely. But note that if ζN = exp(2πi/N), then ζN F̃N is another covering map

which must thereby differ from F̃N by a Möbius transformation; therefore ζN F̃N (τ) = F̃N (rN · τ)

upon checking the derivative at i ∈ H. We deduce that F̃N (rNN · τ) = ζN F̃N (τ) = F̃N (τ), and

thus rNN ∈ SO2(R) must also lie in Γ̃N . But Γ̃N is a free group, and hence rNN is trivial, and rN is
a hyperbolic rotation around i of order N .

Definition 5.1.1. Let us define FN : D(0, 1)→ C r µN by the formula

FN (x) = F̃N

(
i · 1 + x

1− x

)
.

Note that this is just the map F̃N composed with the standard conformal isomorphismD(0, 1)→
H sending 0 to i, and hence

FN : D(0, 1)→ C r µN

is a universal covering map. The action of SO2(R) on D(0, 1) under the pullback map is just given
by rotation, and hence rN acts on D(0, 1) by a rotation of order N . We deduce that FN (ζmq) =
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ζF (q) for some (m,N) = 1. Since FN is a covering map and FN (0) = 0, we must also have F ′N (0) 6=
0, and thus FN (ζq) = ζFN (q) for any Nth root of unity ζ.

Definition 5.1.2. Let ψN be the the inverse of FN .

The map ψN is well-defined up to the action of ΓN ⊂ PSU(1, 1) acting on D(0, 1). In a

neighbourhood of q = 0 so ψN (0) = 0. If ψ̃N is the local inverse of FN around 0 so that ψ̃N (0) = i,
then clearly ψN (z) is a Möbius translate of ψN and hence also of η2/η1. But now from the
equality FN (ζq) = ζFN (q) we deduce (from the form of η1 and η2 in equations (5.0.4) and (5.0.5))
that

(5.1.3) ψN (z) = γ−1
N ·

η2

η1
= γ−1

N

(
z +

zN+1

2N
+ · · ·

)
for some constant γ−1

N . Moreover, we certainly also have

FN (q) = γNq +O(q2),

and hence the conformal radius of FN is given by |γN |. We shall compute γN explicitly in Theo-
rem 5.3.8 below.

Definition 5.1.4. Let GN denote the map D(0, 1)→ Cr {1} such that GN (qN ) = (FN (q))N , or
equivalently GN (q) = (FN (q1/N ))N .

The fact that GN is well-defined is a formal consequence of the relation FN (ζq) = ζFN (q).
From the fact that FN is the universal covering map, we also immediately deduce the following
geometric description of GN .

Lemma 5.1.5. The map GN : D(0, 1) → C r {1} is a covering map away from the point 0 ∈
C r {1}. The map GN is locally an isomorphism in a neighbourhood of 0 in D(0, 1), but it is
totally ramified of degree N at all other preimages of 0. Moreover, it is universal with respect to
any such map.

The inverse map of GN is closely related to the inverse map of FN , and turns out to have a
nicer form:

Lemma 5.1.6. Let ϕN denote the inverse map of GN , normalized so that ϕN (0) = 0. The
function ϕN has the form δ−1

N (φ2/φ1)N , where φ1 and φ2 are the solutions to the differential
equation:

(5.1.7) z(z − 1)2y′′ +

(
1− 1

N

)
(z − 1)2y′ +

(
1

4
+
z − 1

4N2

)
y = 0

such that

(5.1.8) φ1 = 1− (N + 1)z

4N
+ · · · , φ2 = z1/N

(
1− (N − 1)z

4N
+ · · · .

)
.

The conformal radius of the map GN is |γNN |.

Proof. From the formal identity ϕN (x) = ψN (x1/N )N , we deduce

ϕN (z) = γ−NN η2(z1/N )N/η1(z1/N )N .

Letting φi = ηi(z
1/N ), we deduce the lemma from an elementary manipulation directly from

equation (5.0.3). �

5.2. The geometry of Γ̃N and Φ̃N . Recall that F̃N (τ |rN ) = ζF̃N (τ), where rN ∈ SO2(R)
corresponds in D(0, 1) to multiplication by ζ. Explicitly, we have

(5.2.1) rN =

(
cos(π/N) − sin(π/N)
sin(π/N) cos(π/N)

)
.

The element rN acts transitively on the cusps which include i∞, and hence N of the cusps are
given by cot(πk/N) for any integer k. For example, if N is even, then we can take k = (N/2) and
see that 0 is a cusp.
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Definition 5.2.2. Let Φ̃N denote the group 〈Γ̃N , rN 〉.

Since rN normalizes Γ̃N , this contains Γ̃N as a normal subgroup with ΦN/Γ̃N ' Z/NZ.

Theorem 5.2.3. We have Φ̃N ' Z/NZ ∗ Z where rN is as in equation (5.2.1), and the Z is the

stabilizer of i∞ in Γ̃N which is generated by

tN :=

(
1 2 cot(π/2N)
0 1

)
.

The group Γ̃N is the free group on N generators generated by t = tN and its conjugates by powers
of r = rN .

Proof. The group Γ̃N is certainly generated by the stabilizers of the cusps c with F̃N (c) ∈ µN . If
we denote the generator of the stabilizer of i∞ by

(5.2.4) t :=

(
1 cN
0 1

)
,

then the stabilizers of the other cusps associated to µN are generated by the conjugates of t by r.

But we know that Γ̃N has finite covolume and is not compact. Consider the Dirichlet domain ΩN
associated to Γ̃N around z = 0 in the Poincaré model. We can describe ΩN as the region:

Ω := z ∈ C such that d(gz, i) ≥ d(z, i), g, g−1 ∈ {rktr−k}, k = 0, 1, . . . , N − 1.

The region such that d(rktr−kz, i) ≥ d(z, i) and d(rkt−1r−kz, i) ≥ d(z, i) in the Poincaré disc
model is the region bounded by two geodesics starting at ζk going in opposite directions and
intersecting the boundary at ζke±iθ where cN = 2 cot(θ/2). There are exactly 2N such arcs
corresponding to the N generators and their inverses. In particular, if θ < π/N is too small, the
fundamental region will have infinite volume, whereas if θ > π/N is too big, then the Dirichlet

domain will only contain at most N cusps, and yet H/Γ̃N has N + 1 cusps. Thus we must
have cN = 2 cot(π/2N). �

The region ΩN has 2N cusps given by half-integer powers of ζ = exp(2πi/N). It follows from
this that the cusp width at this remaining cusp will be NcN = 2N cot(π/2N), and that all the

remaining N cusps are in the same orbit of Γ̃N . As an example, note that ekπi/N in the Poincaré
disc model corresponds to

(5.2.5) i · 1 + e−kπi/N

1− e−kπi/N
= cot(πk/2N)

in ∂H. But now we have (for example)

(5.2.6) rmN tNr
−m
N · cot

(
π(2m− 1)

2N

)
= cot

(
π(2m+ 1)

2N

)
.

A fundamental domain for Φ̃N is given by the hyperbolic quadrilateral with vertices 0, ζ−1/2, 1, ζ1/2.
Translated to H this is bounded by geodesics from i to cot(π/2N) to i∞ to − cot(π/2N) and back
to i.

5.3. The group Ψ̃N . The group Φ̃N = 〈rN , tN 〉 is contained with index two in the larger

group Ψ̃N = 〈s, tN 〉 where s2 = rN is a rotation of order 2N . The function F̃NN is invariant

under Φ̃N taking the value 1 at one cusp and ∞ at the other. From this we deduce:

Lemma 5.3.1. There is an equality

(5.3.2) 1− F̃NN (s · τ) =
1

1− F̃NN (τ)
.

Proof. Both sides of the equation are uniformizers of H/Φ̃N which take the value 1 at one cusp
and ∞ at the other. This specifies them uniquely up to z 7→ λz scalings. However, this last
ambiguity is removed by noting that both sides have their (unique) zero at τ = i. �
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We also deduce from this the equation

1−GN (−q) =
1

1−GN (q)
.

The group Ψ̃N has a fundamental domain consisting of the points 0, 1, ζ1/2. But this is none

other than a hyperbolic triangle with angles {α, β, γ} = {π/N, 0, 0}. But this suggests that F̃N
should directly be related to Schwarz triangle functions, which leads to a direct description of the
inverse functions ψN and ϕN in terms of hypergeometric functions.

Definition 5.3.3. Let sN (z) denote the function

(5.3.4) sN (z) := z1/N

2F1

[
N+1
2N

N+1
2N

1 + 1
N

; z

]

2F1

[
N−1
2N

N−1
2N

1− 1
N

; z

] .
Lemma 5.3.5. The solutions φ1 and φ2 of the ODE of equation (5.1.6):

(5.3.6) z(z − 1)2y′′ +

(
1− 1

N

)
(z − 1)2y′ +

(
1

4
+
z − 1

4N2

)
y = 0

are given explicitly by

(5.3.7) φ1 =
√

1− z · z1/N · 2F1

[
N+1
2N

N+1
2N

1 + 1
N

; z

]
, φ2 =

√
1− z · 2F1

[
N−1
2N

N−1
2N

1− 1
N

; z

]
,

In particular, we have ϕN (z) = (γ−1
N φ2(z)/φ1(z))N = (γ−1

N sN (z))N and ψN = γ−1
N sN (zN ).

Proof. This is elementary, since one can directly check that both sides satisfy the same differential
equation then check the leading terms. �

Theorem 5.3.8. The conformal radii of FN : D(0, 1) → C r µN and GN : D(0, 1) → C r {1}
are equal to γN and γNN respectively, where

(5.3.9) γN =

Γ

(
N − 1

2N

)2

Γ

(
1 +

1

N

)
Γ

(
N + 1

2N

)2

Γ

(
1− 1

N

) .
We have a (convergent) expansion for γN as follows:

(5.3.10) γN = 161/N

(
1 +

ζ(3)

2N3
+

3ζ(5)

8N5
+ · · ·

)
.

Proof. From equation (5.1.3), it suffices to compute the limit of φ2/φ1 as z → 1, which we can do
directly given the explicit form in terms of hypergeometric functions (see also (5.4.3)). Similarly,
the expansion can be derived directly from the expression in terms of the Gamma function. More
precisely, we can write

(5.3.11) log γN =
log 16

N
+

∞∑
k=1

(22k − 1)

22k−1(2k + 1)
· ζ(2k + 1)

N2k+1
.

�

Example 5.3.12. If N = 2, then C r {±1} is itself biregular to Y (2) = P1 r {0, 1,∞} and thus
one can find a direct description of the uniformization H→ Cr {±1} sending i to 0 by 2λ(τ)− 1.

In this case, the formulas above specialize to the standard identity q = e−πK
′/K where the elliptic

periods K ′ and K are directly related to hypergeometric functions. The only other such case of
an incidental isomorphism C r µN ∼= Y (N) is N = 3: this is [Hem88, § 6 Example 5].
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5.4. Uniform asymptotics for hypergeometric functions.

Lemma 5.4.1. Fix a real constant M0 > 0. Let ψ be the digamma function. For M ≥ M0 and
|z| < e−MN , we have the uniform estimate:

(5.4.2)

∣∣∣∣sN (1− z)
γN

− (1− z)1/N log z + 2γ − 2ψ(1/2 + 1/2N)

log z + 2γ − 2ψ(1/2− 1/2N)

∣∣∣∣� |z|N
where the implied estimates depend on M0 but not on N,M .

Proof. Let a /∈ Z. For |z| < 1, we have the following equality:

(5.4.3) 2F1

[a a
2a

; 1− z
]

=
Γ(2a)

Γ(a)2

∞∑
k=0

(a)k(a)k
k!2

zk (log(z) + 2(ψ(k + 1)− ψ(k + a))) .

Note that the hypergeometric function is multivalued around z = 1, but all different branches are
accounted for by the branches of the logarithm. The function sN (1− z) is given by the ratio (up
to a factor of (1 − z)1/N ) by these functions for a = 1/2 ± 1/2N . As a → 1/2, the coefficients
in this power series are uniformly bounded. For example, since |a| < 1 we have |(a)k|/k! < 1,
whereas |ψ(k) − ψ(k + a)| is maximized when k = 1 and a = 1/2 − 1/4. This immediately leads
to the uniform estimates:∣∣∣∣∣

∞∑
k=1

(a)k(a)k
k!2

zk

∣∣∣∣∣ ,
∣∣∣∣∣
∞∑
k=1

(a)k(a)k
k!2

zk (2(ψ(k + 1)− ψ(k + a)))

∣∣∣∣∣� |z| ≤ e−MN

For |z| < e−MN , we also have Re(log z) ≤ −MN , and so in particular | log z| ≥MN regardless of
the branch of logarithm. This leads to the estimate

sN (1− z)
γN (1− z)1/N

=
log(z) + 2ψ(1)− 2ψ(1/2 + 1/2N) +O(z)

log(z) + 2ψ(1)− 2ψ(1/2− 1/2N) +O(z)

where the implied constants are uniform in N , from which the result follows (using that | log z| �
N). �

5.5. The region FNN ∼ 1 and FN ∼ ∞.

Lemma 5.5.1. Fix a real number M0 > 0. Consider M ≥ M0 and let ΩN be a fundamental
domain for ΦN . If

‖FN (τ)N − 1‖ < e−MN

for τ ∈ ΩN , then for any ε > 0

(5.5.2) im(τ) >
2N2M

π2
(1− ε)

for N � 1, where the implied constant depends only on M0 and ε.

Proof. Note that FNN is 1 : 1 on ΩN and the only cusp where FN = 1 is at ∞, so it suffices to
consider FNN in a neighbourhood of the cusp i∞. We may also take the branch of FN on this
domain so that FN (i∞) = 1. For N sufficiently large, the inequality ‖FN (τ)N−1‖ < e−MN implies
that |FN (τ)− 1| < e−M(1−ε)N for some ε that tends to zero as N increases. Hence, replacing M
by M(1 − ε), we may equivalently assume that, for the branch of ψN such that ψN (1) = 1

and ψ̃N (1) = i∞, that

τ = ψ̃N (1− z), |z| < e−MN .

We may write this as

(5.5.3) τ = i · 1 + ψN (1− z)
1− ψN (1− z)

= i · γN + sN ((1− z)N )

γN − sN ((1− z)N )
.

Using once more the estimate (1− z)N ∼ 1− Z where Z < eM(1+ε)N for sufficiently large N , we
may consider

(5.5.4) τ = i · γN + sN (1− Z)

γN − sN (1− Z)
, |Z| < e−MN .
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Now by Lemma 5.4.1 the leading term of this is

τ ∼ − i cot(π/2N)

π
(2γ + log x− ψ(1/2− 1/2N)− ψ(1/2 + 1/2N))

The imaginary part of this does not depend on the choice of branch of log x and indeed only
depends on |x|, and we deduce with this approximation that

im(τ) ≥ −cot(π/2N)

π
(2γ −NM + ψ(1/2− 1/2N) + ψ(1/2 + 1/2N)) ∼ 2N2M

π2

as required. �

We use this to derive a coarse upper bound on sup|z|=r log |FN |, which is not optimal but is
enough as an input for the logarithmic error term in the Nevanlinna theory estimate in §6.

A horoball in the Poincaré disc model is a ball bounded by a circle inside the disc D(0, 1) which
is tangent to the disc.

Lemma 5.5.5. Let HD denote the horoball in D(0, 1) which is the image of the subset in H

consisting of τ ∈ H with im(τ) ≥ D. For γ ∈ U(1, 1) such that γ̃ =

(
a b
c d

)
∈ PSL2(R), the

image γHD of HD under γ in D(0, 1) is a circle tangent to (a− ic)/(a+ ic) with diameter

(5.5.6) E(γ,D) :=
2

1 +D(a2 + c2)

Lemma 5.5.7. For N ∈ N and r ∈ (0, 1), we have

sup
|z|=r

log |FN | �
N

1− r
,

where the implicit coefficient is absolute.

Proof. By Lemma 5.3.1, the set {z ∈ D(0, 1) : |FN (z)| > eM+1} is contained in the rotation under
s of the set S(M,N) := {z ∈ D(0, 1) : |FNN (z)−1| < e−MN}. Thus to prove the lemma, it suffices
to show that for N

1−r � 1, if we set M = N
1−r , then S(M,N) is contained in {z ∈ D(0, 1) : |z| > r}.

(When N
1−r ≤ C for some large constant absolute C, then sup|z|=r log |FN | ≤ sup|z|=1−1/C log |FN |,

which is a finite number and there are only finitely many N to consider; thus the lemma follows
trivially in this case.)

It follows from Lemma 5.5.1 that

S(M,N) ⊂
⋃
γ∈ΓN

γHD, where D =
N2M

π2
.

Thus we only need to show that the diameters E(γ,D) ≤ 1− r of all γHD.
By Shimizu’s Lemma (see, for example, [EGM98, Theorem 3.1]), we have 2|c| cot(π/2N) ≥ 1

for all γ̃ =

(
a b
c d

)
∈ Γ̃N . Thus by Lemma 5.5.5,

E(γ,D) ≤ 2D−1c−2 � N−2N−1(1− r)N2 =
1− r
N

,

where the implicit constant is absolute. Thus we have E(γ,D) ≤ 1−r once N−1 times the implicit
constant is less than 1. �

Remark 5.5.8. A more refined bound is proved in Kraus–Roth [KR16, Theorems 1.2 and 1.10]. On
the other hand, one can push our method further and prove, with rather more work but uniformly
in N ∈ N and M ∈ [1,∞), that the supremum region |FN | < eM is simply connected of conformal
radius 1−O(M−2N−3) from the origin; this is a sharp estimate. But taking for ϕ in Theorem 2.0.2
the pullback of FN by the Riemann map of some such region |FN | < eM , and ignoring thus the
fine savings from the integrated bound (2.0.4) as opposed to the supremum, would only lead to an
O(N4) holonomy rank bound in place of our requisite logarithmically inflated bound O(N3 logN).
In the next section we will see how to make the full use of the integrated holonomy bound, and
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use Nevanlinna’s value distribution theory to supply our final piece of the proof of the unbounded
denominators conjecture.

6. Nevanlinna theory and uniform mean growth near the boundary

For our application of Theorem 2.0.2, we prove in this section the following uniform growth
bound. Throughout this section, we assume as we may that N ≥ 2. Then the analytic map
FN : D(0, 1)→ P1 omits the N + 1 ≥ 3 values µN ∪ {∞}. In such a situation, we seek to exploit
whatever growth constraints are imposed on the map by Nevanlinna’s value distribution theory.
A theorem of Tsuji [Tsu52, Theorem 11] gives the general asymptotic∫

|z|=r
log+ |F |µHaar =

1

N − 1
log

1

1− r
+Oa1,...,aN (1),

for any universal covering map F : D(0, 1) → C r {a1, . . . , aN} based at F (0) = 0 (see also the
discussion in Nevanlinna [Nev70, page 272]), however this is only asymptotically in r → 1− for
given punctures {ai} whereas we need a uniformity in both r and N . It is at the point (6.1.2) of
the explicit partial fraction coefficients that our argument below makes a critical use of the special
feature of the target set µN ∪ {∞} of omitted values.

Theorem 6.0.1. For each of the choices

p(x) ∈
{
xN , xN/(xN − 1), 1/(xN − 1)

}
,

we have uniformly in N ∈ N and r ∈ (0, 1) the mean growth bound

(6.0.2)

∫
|z|=r

log+ |p ◦ FN |µHaar � log
N

1− r
,

with some (effectively computable) absolute constant implicit coefficient.

This quantity is known in Nevanlinna theory as the mean proximity function at ∞

m(r, f) = m(r, f ;∞) :=

∫
|z|=r

log+ |f |µHaar ∈ [0,∞).

It is complemented by the counting function

N(r, f) = N(r, f ;∞) :=
∑

ρ : 0<|ρ|<r

ord−ρ (f) log
r

|ρ|
+ ord−0 (f) log r,

where, in general for a meromorphic mapping f : D(0, 1) → P1, we let ord−ρ (f) := ord+(1/f) =
max(0, ord(1/f)) is the pole order (if ρ is a pole, and 0 if f is holomorphic at ρ).

Lemma 6.0.3. For every meromorphic function f : D(0, 1) → P1 regular at 0 (that is: f(0) 6=
∞), and every r ∈ (0, 1), we have

N(r, f) ≥ 0,

with equality if and only if f is holomorphic (has no poles) throughout the disc D(0, r).
The Nevanlinna characteristic

T (r, f) := m(r, f) +N(r, f)

satisfies for every a ∈ C the relation

(6.0.4) |T (r, f)− T (r, 1/(f − a))− log |c(f, a)|| ≤ log+ |a|+ log 2,

where

c(f, a) := lim
z→0

(f(z)− a)z−ord0(f−a).

Proof. This is Rolf Nevanlinna’s first main theorem, and is proved formally and straightforwardly
from the Poisson–Jensen formula (see, for instance, [BG06, Proposition 13.2.6]), which we may
rewrite as

(6.0.5) T (r, f)− T (r, 1/f) = log |c(f, 0)|,
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and the triangle inequality relation

(6.0.6)
∣∣ log+ |f − a| − log+ |f |

∣∣ ≤ log+ |a|+ log 2.

See Hayman [Hay64, Theorem 1.2] or Bombieri–Gubler [BG06, Theorem 13.2.10] for the details.
We note that c(f, a) = f(0)− a when a 6= f(0). �

6.1. Reduction to a logarithmic derivative. For f : D(0, 1)→ C holomorphic as opposed to
meromorphic, the polar divisor is empty and N(r, f) = 0, so in that case m(r, f) = T (r, f). Since
by design FNN − 1 is a unit in the ring of holomorphic functions on D(0, 1), our requisite bound
(6.0.2) rewrites in Nevanlinna notation into

(6.1.1) T (r, p ◦ FN )� log
N

1− r
, for each of p(x) ∈

{
xN/(xN − 1), 1/(xN − 1), xN

}
,

and Lemma 6.0.3 using xN/(xN −1) = 1 + 1/(xN −1) and (6.0.6) shows that the later three cases
for p(x) are equivalent to one another. See the explicit inequality (6.1.5) below for one of these
implications. We will prove Theorem 6.0.1 in the form T (r, FNN ) � log N

1−r but pivoting around
the choice

(6.1.2) p(x) :=
xN

xN − 1
=

x

N

∑
ζ∈µN

1

x− ζ
.

By either the chain rule or the partial fractions decomposition, we see that the logarithmic
derivative f ′/f of the nowhere vanishing holomorphic function

(6.1.3) f := 1− FNN : D(0, 1)→ C×

is related to p ◦ FN = FNN /(F
N
N − 1) by

(6.1.4) p ◦ FN =
FN
NF ′N

f ′

f
.

We furthermore have, since FN (0) = 0 and FNN − 1 is a unit in the ring of holomorphic functions
on D(0, 1):

T (r, p ◦ FN ) = m
(
r, 1 +

1

FNN − 1

)
≥ m

(
r,

1

FNN − 1

)
− log 2

= T
(
r,

1

FNN − 1

)
− log 2 = T (r, FNN − 1)− log 2

≥ T (r, FNN )− 2 log 2 = N T (r, FN )− log 4.(6.1.5)

Our proof of Theorem 6.0.1 combines Lemma 5.5.1 with the centerpiece of R. Nevanlinna’s original
analytic proof — based on the lemma on the logarithmic derivative — of his second main theorem
of value distribution theory. To bound the logarithmic derivative terms in (6.1.4), it is sufficient
to cite [Nev70, Lemma IV.3.1 on page 244] or [Hay64, Lemma 2.3 on page 36]. For convenience to
the reader, and particularly since the argument simplifies considerably in the case that we need of
a functional unit (a nowhere vanishing holomorphic function), we include our own self-contained
treatment of a basic explicit case of the lemma on the logarithmic derivative.

Lemma 6.1.6. Let g : D(0, R)→ C× be a nowhere vanishing holomorphic function on some open
neighborhood of the closed disc |z| ≤ R. Assume that g(0) = 1. Then, for all 0 < r < R,

m
(
r,
g′

g

)
< log+

{m(R, g)

r

R

R− r

}
+ log 2 + 1/e.(6.1.7)

Proof. Our functional unit assumption means that the function log g(z) has a single valued holo-
morphic branch on a neighborhood of the closed disc |z| ≤ R with log g(0) = 0. Its real part
is the harmonic function log |g(z)|. Poisson’s formula on the harmonic extension of a continuous
function from the boundary to the interior of a disc reads

log |g(z)| =
∫
|w|=R

log |g(w)| ·R
(w + z

w − z

)
µHaar(w),(6.1.8)
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where k(z, w) := R
(
w+z
w−z

)
is the Poisson kernel. This formula in fact upgrades to

(6.1.9) log g(z) =

∫
|w|=R

log |g(w)| · w + z

w − z
µHaar(w),

because both sides are holomorphic in z, have identical real parts, and evaluate to zero at z = 0.
Differentiation in the integrand of (6.1.9) gives the reproducing formula

(6.1.10)
g′(z)

g(z)
=

∫
|w|=R

2w

(w − z)2
log |g(w)|µHaar(w), ∀z ∈ D(0, R).

for the logarithmic derivative in the interior of the disc |z| ≤ R in terms of boundary values on
the circle |z| = R. We have the elementary calculation

(6.1.11)

∫
|z|=r

|w − z|−2 µHaar(z) =
1

R2 − r2
for |w| = R > r,

and thus the |z| = r integral of (6.1.10) with the triangle inequality and interchanging the orders
of the integrations and using | log |g|| = log+ |g|+ log− |g| = log+ |g|+ log+ |1/g| yields∫

|z|=r

∣∣∣g′(z)
g(z)

∣∣∣µHaar ≤ 2R

∫
|z|=r

∫
|w|=R

|w − z|−2
∣∣ log |g(w)|

∣∣µHaar(w)µHaar(z)

= 2R

∫
|w|=R

(∫
|z|=r

|w − z|−2 µHaar(z)
) ∣∣ log |g(w)|

∣∣µHaar(w)

=
2R

R2 − r2

∫
|w|=R

∣∣ log |g(w)|
∣∣µHaar(w)

=
2R

R2 − r2

(
m(R, g) +m(R, 1/g)

)
=

4Rm(R, g)

R2 − r2
,

on using on the final line the harmonicity property again which implies∫
|w|=R

log |g|µHaar(w) = log |g(0)| = 0.

The final piece of the proof borrows from [BK01, section 4]. Let

E :=
{
z : |z| = r, |g′(z)/g(z)| > 1

}
,

a measurable subset of the circle |z| = r. Since the function log+ |x| is concave on x ∈ [1,∞)
where it coincides with log |x|, Jensen’s inequality gives∫

|z|=r
log+

∣∣∣g′
g

∣∣∣µHaar ≤ µHaar(E) log+
( 1

µHaar(E)

∫
E

∣∣∣g′(z)
g(z)

∣∣∣µHaar(z)
)

≤ log+

∫
|z|=r

∣∣∣g′(z)
g(z)

∣∣∣µHaar(z) + sup
t∈(0,1]

{
t log (1/t)

}
≤ log+

{4Rm(R, g)

R2 − r2

}
+

1

e
≤ log+

{m(R, g)

r

R

R− r

}
+ log 2 +

1

e
,

using R2 − r2 = (R+ r)(R− r) > 2r(R− r) on the final line. �

Remark 6.1.12. The case of arbitrary meromorphic functions g : D(0, R)→ P1 is handled similarly
by a differentiation in the general Poisson–Jensen formula, but with rather more work to estimate
the finite sum over the zeros and poles of g. In this way, by using a technique due to Kolokolnikov
for handling the sum over the zeros and poles, Goldberg and Grinshtein [GG76] obtained the
general bound

m
(
r,
g′

g

)
< log+

{T (R, g)

r

R

R− r

}
+ 5.8501, for g(0) = 1,

and proved that it is essentially best-possible in form apart for the value of the free numerical con-
stant 5.8501 (that has since been somewhat further reduced in the literature, see Benbourenane–
Korhonen [BK01]). The paper of Hinkkanen [Hin92] and the book of Cherry and Ye [CY01] discuss
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the implications to the structure of the error term in Nevanlinna’s second main theorem, mirroring
Osgood and Vojta’s dictionary to Diophantine approximation and comparing to Lang’s conjecture
modeled on Khinchin’s theorem.

6.2. Proof of Theorem 6.0.1. On applying Lemma 6.1.6 to the nowhere vanishing holomorphic
function (6.1.3) and the outer radius choice

R := 1− (1− r)/2 = (1 + r)/2,

and using (cf. [BG06, Corollary 13.2.14]) that m(r, f ′/f) = T (r, f ′/f) is a monotone increasing
function of r, we find the mean growth bound

m
(
r,
f ′

f

)
� log+ T

(1 + r

2
, f
)

+ log+ e

1− r

= log+m
(1 + r

2
, 1− FNN

)
+ log+ e

1− r

� log+m
(1 + r

2
, FNN

)
+ log+ e

1− r

� log+m
(1 + r

2
, FN

)
+ log+ N

1− r

� sup
|z|=(1+r)/2

log+ log |FN |+ log+ N

1− r
,(6.2.1)

where in the last step we have estimated a mean proximity function trivially by a supremum
function.

We shall handle the term FN/F
′
N in (6.1.4) by employing Lemma 6.1.6 to the functional unit

g = 1 − FN , and the following standard chain of implications based on Jensen’s formula in the
reduction of the second main theorem to the lemma on the logarithmic derivative (see, for example,
[Hay64, pages 33–34]), beginning with (6.0.5) for the function F ′N/FN , and using that our function
FN is holomorphic on the disc D(0, 1) with FN (0) = 0 and F ′N (0) 6= 0:

m
(
r,
FN
F ′N

)
= m

(
r,
F ′N
FN

)
+N

(
r,
F ′N
FN

)
−N

(
r,
FN
F ′N

)
− log c(F ′N/FN , 0)

= m
(
r,
F ′N
FN

)
+N

(
r, 1/FN

)
−N

(
r, FN

)
−N

(
r, 1/F ′N

)
+N

(
r, F ′N

)
= m

(
r,
F ′N
FN

)
+N

(
r, 1/FN

)
−N

(
r, 1/F ′N

)
= m

(
r,
F ′N
FN

)
+N

(
r, 1/FN

)
.

Here for the last equality we recall that FN : D(0, 1)→ CrµN is an étale analytic mapping, hence
the derivative F ′N is nowhere vanishing and the ramification term Nram(r, FN ) = N(r, 1/F ′N ) = 0
is actually zero. (In any event one could drop a ramification term Nram = N1 ≥ 0 by positivity,
here or in [Hay64, Theorem 2.1]. See also the discussion in Remark 6.2.5 below.)

We continue to estimate with the triangle inequality (for the second and third lines) and then
(6.0.5), noting that |F ′N (0)| > 1 (for the inequality in the fourth line):

m
(
r,
FN
F ′N

)
= m

(
r,
F ′N
FN

)
+N

(
r, 1/FN

)
≤ m

(
r,

F ′N
1− FN

)
+m

(
r,

1− FN
FN

)
+N

(
r, 1/FN

)
≤ m

(
r,

F ′N
1− FN

)
+ log 2 +m

(
r,

1

FN

)
+N

(
r, 1/FN

)
= m

(
r,

(1− FN )′

1− FN

)
+ T (r, 1/FN ) + log 2 ≤ m

(
r,

(1− FN )′

1− FN

)
+ T (r, FN ) + log 2

≤ T (r, FN ) +O
(

log+ N

1− r
+ sup
|z|=(1+r)/2

log+ log |FN |
)
,(6.2.2)
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upon again using Lemma 6.1.6 with R := (1− r)/2 but now for the functional unit g := 1− FN ,
and a similar argument as in (6.2.1).

At this point the key identity (6.1.4) allows to combine the estimates (6.2.1) and (6.2.2), arriving
at the uniform bound

T (r, p ◦ FN ) = m(r, p ◦ FN ) ≤ m
(
r,
f ′

f

)
+m

(
r,
FN
F ′N

)
≤ T (r, FN ) +O

(
log+ N

1− r
+ sup
|z|=(1+r)/2

log+ log |FN |
)
.(6.2.3)

We leverage the upper bound (6.2.3) on T (r, p ◦ FN ) = N T (r, FN ) + O(1) against the lower
bound (6.1.5) and get a uniform upper bound on T (r, FN ):

(N − 1)T (r, FN )� log+ N

1− r
+ sup
|z|=(1+r)/2

log+ log |FN |.(6.2.4)

Upon doubling the implicit absolute coefficient, plainly for N ≥ 2 this is equivalent to

T (r, FNN ) = NT (r, FN )� log+ N

1− r
+ sup
|z|=(1+r)/2

log+ log |FN |,

uniformly in all N ≥ 2 and r ∈ (0, 1).
Hence Theorem 6.0.1 follows from Lemma 5.5.7 upon replacing r there with (1 + r)/2.

Remark 6.2.5. The bound (6.2.4) can be compared to the well-known particular case for entire
holomorphic functions of the classical Nevanlinna second main theorem (whose method of proof we
emulate here), stating that for any entire function g : C→ C, and any N -tuple of pairwise distinct
points a1, . . . , aN ∈ C, the Nevanlinna characteristic T (r, g) = m(r, g) =

∫
|z|=r log+ |g|µHaar

satisfies the upper bound

(6.2.6) (N − 1)T (r, g) +Nram(r, g) ≤
N∑
i=1

N(r, ai) +O(log T (r, g)) +O(log r)

outside of an exceptional set of radii r ∈ E ⊂ [0,∞) of finite Lebesgue measure: m(E) <∞. Here
Nram(r, g) = N(r, 1/g′) is a ramification term, which is always nonnegative and vanishes if the
map g is étale. This is Nevanlinna’s quantitative strengthening of Picard’s theorem on at most
one omitted value for a nonconstant entire function, for if each of a1, . . . , aN is omitted then all
counting terms N(r, ai) = 0 vanish on the right-hand side of (6.2.6), leading if N ≥ 2 to an O(log r)
upper bound on the growth T (r, g) of g. The idea is that we similarly have a holomorphic map
FN omitting the N values ah = exp(2πih/N), except FN is on a disc rather than the entire plane,
and that (6.2.6) largely extends as a growth bound for holomorphic maps on a disc. For such
completely quantitative results we refer the reader to Hinkkanen [Hin92, Theorem 3] or Cherry–
Ye [CY01, Theorem 4.2.1 or Theorem 2.8.6]. We cannot directly apply these general theorems in
their verbatim forms as they only lead to a bound of the form m(r, FN )� log N

1−r in place of the

required m(r, FN )� 1
N log N

1−r ; cf. the term (q + 1) log(q/δ) in [Hin92, line (1.24)], where q = N
signifies the number of targets ai. But fortuitously we were able to modify their proofs by making
an additional use of the key pivot relation (6.1.2) particular to our situation of {a1, . . . , aq} = µN .

6.3. Proof of Theorem 1.0.1. At this point we have established all the pieces for the proof
of our main result. By Theorem 5.3.8, assumption (1) in Proposition 3.0.1 is indeed satisfied,
with the sharp constant A := ζ(3)/2 > 0. By Theorem 6.0.1 with the choices p(x) := xN and
r := 1 − BN−3, assumption (2) in Proposition 3.0.1 is also satisfied. In terms of the rings of
modular forms MN and RN at an even Wohlfahrt level N introduced in 4.2.1, the conclusion of
Proposition 3.0.1 is thus an inequality [RN : M2] ≤ CN3 logN , for some absolute constant C ∈ R
independent of N . At this point Proposition 4.2.5 proves the equality RN = MN for all N ∈ N,
which is the unbounded denominators conjecture.

The proof of Theorem 1.0.1 is thus completed.
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Remark 6.3.1. Our proof for Theorem 1.0.1 generalizes in the obvious way to establish that a
modular form f(τ) having a Fourier expansion in ZJq1/N K (algebraic integer Fourier coefficients)
at one cusp, and meromorphic at all cusps, is a modular form for a congruence subgroup of SL2(Z).
We include an indication of the details.

Since f(τ) is a modular form, we are reduced to the situation of a number field K such that
f(τ) ∈ OKJq1/N K. We use R2N to denote the ring of modular functions with coefficients in K,
bounded denominators, and cusp widths dividing 2N . We follow the proof of Proposition 3.0.1
now on the case of the ring H(U, x(t), OK) from Definition 2.0.1: the ring of formal power series
f(x) ∈ KJxK such that f(x(t)) ∈ OKJtK and L(f) = 0 for some nonzero linear differential op-
erator L over Q(x) without any singularities on U . Then R2N ⊂ H(U, x(t), OK) ⊗OK

K. Note
that U is stable under the action of Gal(Q/Q), and thus H(U, x(t), OK) = H(U, x(t),Z) ⊗Z OK
and dimK(p(x))H(U, x(t), OK) ⊗ K(p(x)) = dimQ(p(x))H(U, x(t),Z) ⊗ Q(p(x)). Thus by Theo-

rem 2.0.2, we still have that R2N has dimension at most CN3 logN over K[λ±, (1 − λ)±]. The
claimed extension to ZJq1/N K Fourier expansions now follows upon remarking that the proof of
Proposition 4.2.5 still persists when Q is replaced by K.

7. Generalization to vector-valued modular forms

7.1. Generalized McKay–Thompson series with roots from Monstrous Moonshine.
Our argument also proves a vector generalization of the unbounded denominators conjecture, which
has been conjectured by Mason [Mas12] (see also the earlier work of Kohnen and Mason [KM08]
for a special case) to the setting of vector-valued modular forms of SL2(Z), with motivation from
the theory of vertex operator algebras and the Monstrous Moonshine conjectures. The weaker
statement of algebraicity over the ring of modular forms was conjectured earlier by Anderson
and Moore [AM88], within the context of the partition functions or McKay–Thompson series
attached to rational conformal field theories. We refer also to André [And04, Appendix], for a
discussion from the arithmetic algebraization point of view — the method that we build upon
in our present paper — on the Grothendieck–Katz p-curvature conjecture. Eventually the more
precise expectation crystallized, see Eholzer [Eho95, Conjecture on page 628], that all RCFT
graded twisted characters are in fact classical modular forms for a congruence subgroup of SL2(Z)
(which is more precise than Anderson and Moore’s conjectured algebraicity over the modular ring
Z[E4, E6]).

This conjecture became known as the congruence property in conformal field theory, and was
proved in the eponymous paper of Dong, Lin and Ng [DLN15], after landmark progresses from
many authors (for some history, including notably Bantay’s solution [Ban03] under a certain
heuristic assumption, the orbifold covariance principle [Ban00, Ban02, Xu06], we refer the reader
to the introduction of [DLN15]). Finally, the congruence property for the McKay–Thompson
series in the full equivariant setting (orbifold theory) V G of a finite group G of automorphisms
of a rational, C2-cofinite vertex operator algebra V (the prime example being the Fischer–Griess
Monster group operating on the Moonshine module of Frenkel–Lepowski–Meurman [FLM88]) was
proved by Dong and Ren [DR18] by a reduction to the special case G = {1} that is [DLN15].

Our paper, via Theorem 7.3.3 below for the vector valued extension of the congruence property,
inherits a new proof of these modularity theorems. The connection was engineered by Knopp and
Mason [KM03a], with their formalization of generalized modular forms for SL2(Z), and fine tuned
by Kohnen and Mason [KM08, § 4], who brought forward the idea of a purely arithmetic approach
— based on the integrality properties of the Fourier coefficients, that record a graded dimension
and are hence integers — for a part of Borcherds’s theorem [Bor92] (the Conway–Norton “Mon-
strous Moonshine” conjecture). Namely, suppressing the Hauptmodul property, for the classical
modularity — under a congruence subgroup of SL2(Z) — of all the various McKay–Thompson
series for the Monster group over the Moonshine module V ]. Whereas Borcherds’s proof, based on
his own generalized Kac–Moody algebras that go outside of the general framework of vertex op-
erator algebras, is rather particular to the Monster vertex algebra and genus 0 arithmetic groups,
Kohnen and Mason proposed that an arithmetic abstraction from the integrality of Fourier coef-
ficients might open up a window on the modularity and congruence properties to apply just as
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well in the equivariant setting to any rational C2-cofinite vertex operator algebra — this theorem,
eventually proved in [DLN15, DR18] by other means, was an open problem at the time of [KM08].

It is precisely this arithmetic scheme that we are able to complete with our paper.

7.2. Unbounded denominators for the solutions of certain ODEs. In the language of
Anderson–Moore [AM88, page 445], the functions occurring below are said to be quasi-automorphic
for the modular group PSL2(Z), while in Knopp–Mason [KM03b] or Gannon [Gan14], they arise as
component functions of vector-valued modular forms for SL2(Z). We firstly take up the holonomic
viewpoint and give a yet another formulation, in the equivalent language of linear ODEs on the
triply punctured projective line, where we think of x as the modular function λ(τ)/16 ∈ q+q2ZJqK,
where q = exp(πiτ), and of P1 r{0, 1/16,∞} as the modular curve Y (2) = H/Γ(2). This answers
the question raised in [And04, Appendix, A.5]. For simplicity of exposition, we only consider the
case of a power series expansion f(x) ∈ ZJxK here, as opposed to a general Puiseux expansion (see
Remark 7.2.2).

Theorem 7.2.1. Let f(x) ∈ ZJxK be an integer coefficients formal power series solution of L(f) =
0, where L is a linear differential operator without singularities on P1 r{0, 1/16,∞}. If the x = 0
local monodromy of L is finite, then f(x) is algebraic, and more precisely, the function f(λ(τ)/16)
on H is automorphic for some congruence subgroup Γ(N) of SL2(Z).

Proof. Our condition is that the x = 0 local monodromy group is Z/N for some N ∈ N. Then
the formal function g(x) := f(xN ) is in ZJxK and fulfills a linear ODE on P1 r {16−1/NµN ,∞}.
In our notation of Theorem 2.0.2, that means g ∈ H(C r 16−1/NµN ,Z). Hence, denoting again
by FN : D(0, 1) → C r µN the universal covering map taking FN (0) = 0, recalling our exact
uniformization radius formula in Theorem 5.3.8 giving in particular the strict lower bound

|F ′N (0)| = N
√

16
(

1 +
ζ(3)

2N3
+

3ζ(5)

8N5
+ · · ·

)
>

N
√

16,

and letting then

ϕ(z) := 16−1/NFN (rz)

for some parameter r with N
√

16
/
|F ′N (0)| < r < 1, Theorem 2.0.2 implies that g(x) ∈ ZJxK is an

algebraic power series. Hence f(x) = g( N
√
x) is algebraic.

At this point we know that f(λ(τ)/16) is automorphic for some finite index subgroup Γ ⊂ Γ(2).
Theorem 1.0.1 then upgrades this to automorphy under some congruence modular group Γ(M),
for some M ≡ 0 mod N , and the result follows upon replacing N with M . �

Remark 7.2.2. To include Puiseux series f(x) ∈ CJx1/mK, the statement and proof apply verbatim
on replacing the integrality condition f(x) ∈ ZJxK by f(λ(τ)/16) ∈ ZJλ(τ/m)/16K⊗C.

Remark 7.2.3. The condition in Theorem 7.2.1 that the linear differential operator L has a finite
local monodromy at x = 0 is essential for algebraicity. The canonical and explicit transcenden-
tal example, which is given in [And04, Appendix, A.5] and we have already mentioned in our
introduction § 1.1, is the Gauss hypergeometric series or complete elliptic integral of the first kind

2

π
K(x) := 2F1

[
1/2 1/2

1
; 16x

]
=

∞∑
n=0

(
2n

n

)2

xn,

that is the Hadamard square of (1 − 4x)−1/2 and has the Jacobi theta function parametrization
making

(7.2.4) 2F1

[
1/2 1/2

1
;λ(q)

]
=
(∑
n∈Z

qn
2
)2

a weight one modular form for the congruence group Γ(2). The modularity streak is not an
accident: more generally, we may reversely start with any congruence modular form of a weight
k > 0, such as for instance Ramanujan’s (discriminant) weight 12 modular form ∆(τ) = q

∏∞
n=1(1−

qn)24 ∈ qZJqK, and express it formally into a power series in x := λ(τ)/16, using ZJqK = ZJxK as
in §1.1. It is then a classical fact, cf. Stiller [Sti84] or Zagier [Zag08, § 5.4], that the resulting
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formal power series fulfills a linear ODE on a finite étale cover of P1 r {0, 1/16,∞} ∼= Y (2), of

order k + 1 and monodromy group commensurable with Symk SL2(Z) ↪→ SLk+1(Z).
It remains to us an open question whether a complete description of all integral solutions

f ∈ ZJxK on dropping the x = 0 finite local monodromy condition in Theorem 7.2.1 should arise
in this way from a classical congruence modular form expressed into a holonomic function in
x = λ/16. We formulate the precise statement in Question 7.4.1 below.

7.3. Vector-valued modular forms. We close our paper by another formulation of Theo-
rem 7.2.1, translated now over to the language of vector-valued modular forms. The following
definition is a special case of vector-valued modular forms studied in [FM16a, §2, Definition 1]

Definition 7.3.1. A vector-valued modular form of weight k ∈ Z and dimension n for SL2(Z) is
a pair (F, ρ) made of a holomorphic mapping F = (F1, . . . , Fn) : H → Cn and an n-dimensional
complex representation

ρ : SL2(Z)→ GLn(C)

obeying the following properties:

• For all γ ∈ SL2(Z),

F t |kγ = ρ(γ)F t;

• The matrix

ρ

(
1 1
0 1

)
∈ GLn(C)

is semisimple.
• All components Fj : H → C have moderate growth in vertical strips: for all a < b and
C > 0, there exist A,B > 0 such that

∀τ ∈ H, a ≤ Re τ ≤ b, Im τ ≥ C =⇒ |Fj(τ)| ≤ AeB Im τ .

Here, as usual, |k is used to denote the componentwise right action of γ =

(
a b
c d

)
via the usual

automorphy factor jk(γ, τ) = (cτ + d)−k:

f(τ) |kγ := jk(γ, τ)f(γτ) = (cτ + d)−kf(γτ).

Remark 7.3.2. Taken together, see [AM88, § 2.A], the semisimplicity and moderate growth condi-
tions are equivalent to the existence of generalized Puiseux formal expansions (except in general
with irrational exponents: but without log q terms, due to semisimplicity) of each component
function Fj(τ) at the cusp q = 0. More precisely, via a change of basis (see the equivalent notion

in [FM16a]), we may assume that ρ

(
1 1
0 1

)
is a diagonal matrix. If Fj is a λ-eigenvector of

ρ

(
1 1
0 1

)
, then Fj =

∑
n∈Z≥n0

an,jq
n+µ for some n0 ∈ Z, where q = e2πiτ and we choose a µ ∈ C

such that λ = e2πiµ.

Thus, the classical (scalar-valued) modular forms Mk(Γ(1), χ) attached to a finite-order charac-
ter χ : Γ(1)→ U(1) are precisely the special case n = 1 of one-dimensional vector-valued modular
forms and a unitary character ρ. In a reverse direction, any classical (scalar-valued) modular form
for a finite index subgroup Γ ⊆ SL2(Z) can be considered as the first component of a vector-
valued modular form for SL2(Z) of dimension [Γ(1) : Γ]. From that point of view, there is no loss
of generality in Definition 7.3.1 to limit to the representations of the ambient group SL2(Z).

Knopp and Mason’s generalized modular forms [KM03a] are the case, intermediate in general-
ity, where the representation ρ is monomial : that is, induced from a linear character χ : Γ→ C×

on a finite index subgroup Γ ⊂ SL2(Z). If that character χ is unitary, then in fact it has fi-
nite image and all components of F are classical modular forms of weight k for a finite index
subgroup [KM03a]. The general (non-unitary) case does come up for the partition function and
correlation functions of a rational conformal field theory [KM03a], to which the point of contact
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is supplied by Zhu’s modularity theorem [Zhu96] (see also Codogni [Cod20] for a recent differ-
ent proof and a generalization), and its extension to the equivariant setting by Dong, Li and
Mason [DLM00].

To make the connection to Theorem 7.2.1, note upon restricting the representation ρ to the free
subgroup Z ∗ Z ∼= Γ(2) ⊂ Γ(1) = SL2(Z) that the case of weight k = 0 and finite-order element

ρ

(
1 1
0 1

)
is equivalent to exactly the situation of 7.2.1: a local system on the triply-punctured

projective line Y (2) ∼= P1 r {0, 1/16,∞} that has a finite local monodromy around the puncture
x = 0. We refer the reader to [BG07, Gan14] regarding the bridge between these two equivalent
points of view.

Our general result on unbounded denominators for components of vector-valued modular forms
is the following.

Theorem 7.3.3. Let (F, ρ) be a vector-valued modular form for SL2(Z) of dimension n and
weight k. Suppose that some component function Fj(τ) : H → C of F = (F1, . . . , Fn) : H → Cn

has at τ = i∞ a formal Fourier expansion lying in ZJqK = ZJeπiτ K. Then that component Fj(τ)
is a classical modular form of weight k on a congruence subgroup of SL2(Z).

Proof. After some standard theorems from the theory of G-functions to reduce to the case that the

semisimple matrix ρ

(
1 1
0 1

)
∈ GLn(C) is in fact of finite order, this is an equivalent expression

of Theorem 7.2.1.

The transition is as follows. By taking the componentwise product F (τ)g(τ)(λ(τ)/16∆(τ/2))
k+k′
12 ,

where we choose a non-zero scalar-valued modular form g(τ) ∈ Z[[q]] of weight k′ such that
12 | k + k′, and restricting the full modular group to its subgroup Γ(2), we reduce to the case
k = 0 of local systems on Y (2) ∼= P1 r {0, 1/16,∞}. Without loss of generality upon passing to a
factor, we may assume that local system to be irreducible. The holomorphic vector bundle with
integrable connection admitting F for its horizontal sections is indeed meromorphic at the cusps
of Y (2) due to the existence of the q-expansion of F . Hence F is a solution of a rank-n system of
first-order linear homogeneous ODEs over Q[λ, 1/λ, 1/(1−λ)]. By the theorem of the cyclic vector,
see [DGS94, § III.4], there is an irreducible linear differential operator L over Q(λ) without singu-
larities on Y (2) = Spec Z[λ, 1/λ, 1/(1−λ)] and such that all n component functions F1, . . . , Fn are
formal solutions of the linear homogeneous ODE L(f) = 0. Since one of these (namely, Fj) has
a λ = 0 formal expansion in ZJqK = ZJλ/16K, Chudnovsky’s theorem [DGS94, Theorem VIII.1.5]
implies that L satisfies the Galočkin (finite global operator height σ(L) <∞) condition [DGS94,
VII.2.(2.3) on page 227], hence by the Bombieri–André theorem [DGS94, Theorem VII.2.1], L sat-
isfies the Bombieri (finite generic global inverse radius ρ(L) < ∞) condition [DGS94, VII.2.(2.1)
on page 226], and is therefore globally nilpotent. At this point Katz’s local monodromy the-
orem [Kat70] (see also [DGS94, Theorem III 2.3 (ii)]) proves that L has quasi-unipotent local

monodromies. Now by the semisimplicity condition on ρ

(
1 1
0 1

)
in Definition 7.3.1, it follows

that in fact the x = 0 local monodromy of L has finite order. The result then follows on applying
Theorem 7.2.1 to f(x) = Fj(τ). �

Corollary 7.3.4 (Mason’s conjecture). If all components of a vector-valued modular form (F, ρ)
for SL2(Z) have Fourier expansions with bounded denominators, then the representation ρ has a
finite image, and more precisely ker(ρ) ⊇ Γ(N) for some N ∈ N.

7.4. Some questions and concluding remarks.

7.4.1. Mason’s conjecture, as discussed in [Mas12, KM08, KM12], concerned the stronger condi-
tion in Corollary 7.3.4, namely that all components F1, . . . , Fn have bounded denominators. These
are the cases emerging in conformal field theories, and apart from Gottesman’s result [Got20, The-
orem 1.7] resolving a strong form of the conjecture for a class of two-dimensional vector-valued
modular forms on Γ0(2), the literature on the vector-valued case has focused on the stronger
assumption for the full vector of components F . We review some of this work here.
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Originally Kohnen and Mason [KM08, KM12] focused on the particular case (GMF ) that
the representation ρ is monomial (induced from a one-dimensional character on a finite index
subgroup of SL2(Z)). They used the Rankin–Selberg method to prove the conjecture in the case
of a generalized modular function (weight 0) without any zeros or poles on the extended upper-
half plane [KM08, Theorem 1]. In fact Selberg’s paper [Sel65] that they used here had already
considered vector-valued modular forms for the purpose of extending the Rankin–Selberg estimate
into the noncongruence case. Kohnen and Mason [KM08, Theorem 2], again based on the Rankin–
Selberg L-function method but now with a finer input from the Eichler–Shimura–Weil bound on
Fourier coefficients of congruence cusp forms in weight 2, also proved that when ρ is induced from
a linear character of a congruence subgroup of SL2(Z), the same result on generalized modular
function units also holds if the condition on integer coefficients is relaxed to S-integer coefficients:
a case that goes beneath the scope of our results here.

In a sequel work [KM12], Kohnen and Mason used the Knopp–Mason canonical factoriza-
tion [KM09] f = f0f1 (over C) of a parabolic generalized modular function f on a congruence
subgroup of SL2(Z), where f0 is a parabolic generalized modular function of a unitary character
χ, while f1 is a parabolic generalized modular function without zeros or poles on the extended
upper-half plane [KM03a]. Combining to their earlier method from [KM08], they thus proved that
the unbounded denominators conjecture for the case of parabolic GMF is equivalent to the alge-
braicity of the first “few” Fourier coefficients of the component f1 in the canonical factorization
of f . As an application they proved Mason’s unbounded denominators conjecture for the case of
a cuspidal parabolic GMF of weight 0 on a congruence group.

In the case n = 2 of two-dimensional representations, Mason’s conjecture was settled by Franc
and Mason [Mas12, FM14], and extended further by Franc, Gannon and Mason [FGM18] to the
stronger sense of only requiring the p-adic boundedness of the coefficients for a full density set of
primes p. Their proof relies on the special incidence that the rank-2 local systems on P1r{0, 1,∞}
reduce to the Gauss hypergeometric equation, and the classical theory of hypergeometric functions.
It is conceivable that the algebraicity part (over Q(x), respectively over the ring of classical
modular forms) in Theorems 7.2.1 and 7.3.3 could likewise hold under a similar loosening of the
integrality condition; but our proof does not yield to this. On the other hand, for representations
of dimension n ≥ 3, it is plain that the congruence property ceases to hold as in [FM14] if we relax
ZJqK to Z[1/S]JqK. The hypergeometric method was extended to three-dimensional representations
(n = 3) of SL2(Z) by Franc–Mason [FM16a] and Marks [Mar15], and employed back in [FM16b]
to derive certain cases of the original unbounded denominators conjecture.

7.4.2. If one drops the semisimplicity stipulation on ρ

(
1 1
0 1

)
in the definition of a vector-valued

modular form, the resulting structure has been named a logarithmic vector-valued modular form
by Knopp and Mason [KM11]. They also do arise in conformal field theories, termed logarithmic
(in place of rational). See, for example, Fuchs–Schweigert [FS19]. But now by Remark 7.2.3 the
components of a weight zero vector-valued modular form with bounded denominators can certainly
be transcendental over C(λ). Still the examples there are classical (congruence) modular forms,
except of a higher weight. The following is an extension of the unbounded denominators problem
over to the logarithmic setting. It remains outside the scope of our method as far as we could see.

Question 7.4.1. If a component Fj(τ) of a logarithmic vector-valued modular form for SL2(Z)
has a ZJqK Fourier expansion, does Fj(τ) belong to the ring of classical (congruence) quasi-modular
forms of all weights and levels?

Here, the quasi-modular ring is the smallest ring containing all classical modular forms and
stable under the q ddq operator; we refer to [Zag08, § 5.3] for the precise definition. Complementing

Example 7.2.3 is the λ-pullback of the complete elliptic integral of the second kind:

2

π
E(λ(q)) := 2F1

[
1/2 −1/2

1
;λ(q)

]
= 1− 4q + 20q2 − 64q3 + 164q4 − 392q5 + · · · ∈ ZJqK,
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clearly a component of a logarithmic vector-valued modular form on SL2(Z), whose q-expansion
is in ZJqK and a little less obvious than (7.2.4), but indeed one can verify that

2

π
E(λ(q)) =

(∑
n∈Z q

n2
)(∑

n∈Z(−1)nqn
2
)4

+ 4q ddq

(∑
n∈Z q

n2
)

(∑
n∈Z q

n2
)3

is also an element of the quasi-modular ring for the congruence level Γ(2). A further apparent
example is TODO: But

what about∑ 1
(n+1)2

(
2n
n

)2
(λ/16)n,

does that belong
to the
quasi-modular
ring?

∫
2

π
K(16x) dx =

∞∑
n=0

1

n+ 1

(
2n

n

)2

xn+1 ∈ ZJxK,

where the integrality of the coefficients comes from the Catalan numbers Cn = 1
n+1

(
2n
n

)
∈ Z. But

this example is not really new:

8

∫
2

π
K(16x) dx =

2

π
E(16x) + (16x− 1)

2

π
K(16x).

7.4.3. Our proof of Theorems 1.0.1 and 7.3.3 is readily refined to yield a further precision in two
regards:

Firstly, the condition on ZJq1/N K Fourier coefficients can be relaxed to ZJq1/N K ⊗ C Fourier
coefficients.

Secondly, the condition that the modular form f(τ), respectively the vector-valued modular
form F (τ) are holomorphic on H can be relaxed to the condition of meromorphy on H.

We leave it to the interested reader to fill in the details of these further extensions of our results.

7.4.4. Much less obvious is how to extend our results to arithmetic groups other than SL2(Z).
Here are two possible settings one could consider.

Firstly, the group SL2(Fq[t]) in function field arithmetic and its attendant theory of Drinfeld–
Goss modular forms. See Pellarin [Pel21] for a recent survey of this area. Here, in the analogy with
SL2(Z) where the congruence kernels of these two arithmetic groups are similarly large, it would
be interesting to decide whether the modular forms on a finite index subgroup of SL2(Fq[t]) that
have (up to a Fq(t)

× scalar multiple) a u-expansion [Pel21, § 4.7.1] with coefficients in A = Fq[t]
are likewise the congruence modular forms.

Secondly, the mapping class groups Γg,n = Mod(Sg,n) in signatures (g, n) other than (1, 1), (1, 0)
or (0, 4) that we have implicitly been limiting to. Recall that Γ1,1

∼= Γ1,0 = Mod(T2) = SL2(Z) and
Γ0,4
∼= PSL2(Z)n (Z/2×Z/2), and correspondingly the discussion in the rational conformal field

theory under §7.1 has been for the 1-loop partition function with a complex torus (g = 1) as the
worldsheet [Gan06]. In a more recent research stream in two-dimensional conformal field theory,
a higher genus extension of Zhu’s modularity theorem was recently obtained by Codogni [Cod20],
on associating to any holomorphic vertex operator algebra a Teichmüller modular form in every
signature (g, n): a section of a tensor power λ⊗(c/2) of the Hodge bundle over Mg,n, where the
(doubled) weight c is the central charge of the vertex algebra. This Teichmüller modular form is,
up to the c-th power of a certain higher genus generalization [MT06] of the Dedekind eta function,
equal to the partition function of the conformal field theory associated to the vertex algebra. At
the very least, one could ask about extending the cruder algebraicity proviso of our Theorem 7.3.3
over to the more general setting of a component of a vector-valued Teichmüller modular form that
has the appropriate integrality property.

7.4.5. Finally we return to our introductory outline § 1.1 where we acknowledged that our ap-
proach to the unbounded denominators conjecture has been particularly inspired by the papers of
Ihara [Iha94] and Bost [Bos99] on arithmetic algebraization and Lefschetz theorems in Arakelov
geometry. Our central overconvergence boost emerged from the isogeny [N ] of Gm to trade
a Bely̆ı map, or more generally a local system on P1 r {0, 1,∞} that has a Z/N local mon-
odromy around x = 0, for a local system on P1 r {µN ∪ ∞}: the step of extending through
the falsely apparent singularity at x = 0. This is directly inspired by Ihara’s employment of
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an arithmetic rationality theorem of Harbater [Iha94, §1 Lemma] to derive π1 results on cer-
tain arithmetic schemes, including for instance a Diophantine analysis proof of Saito’s example
of π1

(
Spec Z[x, 1/x, 1/(x − 1)]

)
= {1}. In a similar fashion, our Theorem 1.0.1 can be used to

establish a π1 result in the style of Bost [Bos99].

Theorem 7.4.2. Let N ∈ N, let K/Q(µN ) be a finite extension, and let π : X (N) → SpecOK
(“connected Néron model”) be the connected component containing the cusp ∞ in the smooth part
of the minimal regular model of X(N) over SpecOK . Thus the cusp ∞ extends to a morphism
ε : SpecOK → X (N).

Then, for every geometric point η of SpecOK , the maps of algebraic fundamental groups

π∗ : π1(X (N), ε(η))→ π1(SpecOK , η)

and
ε∗ : π1(SpecOK , η)→ π1(X (N), ε(η))

are mutually inverse isomorphisms.

Proof (a sketch). This follows rather formally by the argument of [Iha94, § 4 on page 252] and [Iha94,
proof of Theorem 1 loc.cit. on pages 248–249], upon replacing Ihara’s function field k(t) by the
modular function field K(X(N)) and Ihara’s formal power series ring OJtK by OKJλ(τ/N)/16K,
taking account of Remark 6.3.1, and on using our Theorem 1.0.1 in place of Harbater’s arithmetic
rationality input [Iha94, Claim 1A on page 248]. �

Remark 7.4.3. Another π1 interpretation of the unbounded denominators conjecture, in terms of
the Galois theory of the Tate curve and the congruence kernel of SL2(Z), was given by Chen [Che18,
Conjecture 5.5.10].

Similarly to our choice of the isogeny [N ] : Gm → Gm, one could perhaps more directly
consider the modular covering X(2N)→ X(2) and use that it is totally ramified of index N over
the three cusps of X(2). Thus a local system (E ,∇) on the modular curve Y (2) ∼= P1 r {0, 1,∞}
that has Z/N local monodromies around the three singularities has its pullback g∗E under the
modular covering g : Y (2N)→ Y (2) extend through the cusps of Y (2N) to a local system on the
projective curve X(2N). See also André [And04, II § 8.3], for a more general setting. Another
natural approach to the unbounded denominators conjecture would then be to aim directly for
rationality on the curve X(2N), instead of for a tight algebraicity or holonomicity rank bound
over X(2). Certainly at least the algebraicity clause of Theorems 7.2.1 and 7.3.3 is also possible
by this alternative higher genus route to an arithmetic algebraization.

It is tempting to approach Theorem 7.4.2 or the congruence property directly using the arith-
metic rationality theorem of Bost and Chambert-Loir [BCL09], although we were unable to do so.
In these optics, it may be of some interest to remark that the case of Theorem 7.4.2 with N = 6
and K a sufficiently large number field to attain semistable reduction is contained in [Bos99, Corol-
lary 1.3 with Example 7.2.2 (i)]. Indeed, the modular curve X(6) has genus 1 and turned into an
elliptic curve using the cusp ∞ for the origin. Since this elliptic curve contains the automorphism(

1 1
0 1

)
of order 6, it has j-invariant 0 and is analytically isomorphic with the complex torus

C/Z[ω], ω = eπi/3 = 1+
√
−3

2 , with complex multiplication by the Eisenstein integers Z[ω], and in
particular extending to a (smooth, proper) abelian scheme over SpecOK . Its Faltings height is

−1

2
log
{ 1√

3

(Γ(1/3)

Γ(2/3)

)3}
= −0.749 . . . < −0.05 . . . =

1

2
log

π

4 Imω
,

by the Lerch–Chowla–Selberg formula making Bost’s capacitary condition [Bos99, Corollary 1.3]
apply, and this is the isolated minimum value of the Faltings height across all elliptic curves. In
practice this means that this complex torus has a “large” univalent complex-analytic uniformiza-
tion (in the sense of conformal size from the origin [∞] and potential theory), sufficient to place
this particular case of Theorem 7.4.2 to within the framework of arithmetic rationality — as op-
posed to algebraicity or holonomicity — theorems [Bos99, BCL09] on the algebraic curve X(N).
Can such an approach be continued to all N?
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