Stonehenge

From Stonehenge to Witten Skipping all the Details

Banff International Research Station, November 16, 2003 Dror Bar–Natan, University of Toronto

Justin Sawon told us about Feynman diagrams for the Chern-Simons-Witten theory:

$$\int_{\mathfrak{g}\text{-connections}} \mathcal{D}A \, hol_K(A) \exp\left[\frac{ik}{4\pi} \int\limits_{\mathbb{R}^3} \operatorname{tr}\left(A \wedge dA + \frac{2}{3}A \wedge A \wedge A\right)\right] \longrightarrow \sum_{\text{Feynman Diagrams } D} W_{\mathfrak{g}}(D) \not \sum \mathcal{E}(D) \longrightarrow \sum_{\text{Feynman Diagrams } D} W_{\mathfrak{g}}(D) \not \sum \mathcal{E}(D) \xrightarrow{\text{Feynman Diagrams } D} W_{\mathfrak{g}}(D) \not \sum \mathcal{E}(D) \not \sum \mathcal$$

Dylan Thurston

When all the dust settles this becomes the generating function of all stellar coincidences:

$$Z(K) := \lim_{N \to \infty} \sum_{\text{3-valent } D} \frac{1}{2^c c! \binom{N}{e}} \langle D, K \rangle_{\overline{\mathbb{H}}} D \cdot \begin{pmatrix} \text{framing-dependent counter-term} \\ \text{dependent counter-term} \end{pmatrix} \in \mathcal{A}(\circlearrowleft) \quad \begin{array}{c} N := \# \text{ of stars} \\ c := \# \text{ of chopsticks} \\ e := \# \text{ of edges of } D \end{array} := \text{Span} \begin{pmatrix} \lozenge \\ \text{Span} \end{pmatrix} \quad \begin{array}{c} \text{oriented vertices} \\ \text{Span} \\ \text{where relations} \\ \text{where relations} \\ \text{where relations} \\ \text{where relations} \\ \text{Span} \end{pmatrix}$$

count

with signs

When deforming, catastrophes occur when:

 $\langle D, K \rangle_{\mathbb{H}} := \begin{pmatrix} \text{The signed Stonehenge} \\ \text{pairing of } D \text{ and } K \end{pmatrix}$:

(see below)

(similar argument)

The Gauss curve slides over a star – Solution: Multiply by a framing–dependent counter–term. (not shown here)

Theorem. Modulo Relations, Z(K) is a knot invariant!

Definition. V is finite type (Vassiliev, Goussarov) if it vanishes on

sufficiently large alternations as on the right

Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.

Conjecture. (Taylor's theorem) Finite type invariants separate knots.

Theorem. Z(K) is a universal finite type invariant! (sketch: to dance in many parties, you need many feet).

Goussarov

Vassiliev

Related to Lie algebras

More precisely, let $\mathfrak{g}=\langle X_a\rangle$ be a Lie algebra with an orthonormal basis, and let $R=\langle v_\alpha\rangle$ be a representation. Set

$$f_{abc}:=\langle [a,b],c\rangle \qquad X_av_\beta=\sum_\beta r_{a\gamma}^\beta v_\gamma$$
 and then

$$W_{\mathfrak{g},R}: \quad \stackrel{\gamma}{\underset{b}{\bigvee}} \stackrel{\beta}{\longrightarrow} \quad \sum_{abc\alpha\beta\gamma} f_{abc} r^{\beta}_{a\gamma} r^{\gamma}_{b\alpha} r^{\alpha}_{c\beta}$$

 $W_{\mathfrak{g},R} \circ Z$ is often interesting:

$$g = sl(2)$$
 \longrightarrow

The Jones polynomial

$$\mathfrak{g} = sl(N)$$

The HOMFLYPT polynomial

Przytycki

$$g = so(N)$$

The Kauffman polynomial

Sorry, there's space left and I run out of things to say

"God created the knots, all else in topology is the work of man."

Leopold Kronecker (modified)

This handout is at http://www.math.toronto.edu/~drorbn/Talks/BIRS-0311