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Papers

@ The Betti side of the double shuffle theory.
I. The harmonic coproduct, arXiv:1803.10151.

@ The Betti side of the double shuffle theory.
Il. Torsor structures, arXiv:1807.07786.

@ The Betti side of the double shuffle theory.
Ill. Double shuffle relations for associators,
in preparation.
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The context

Section 0:
The context
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Two approaches to the algebraic relations
between MZVs

@ based on combinatorics: The MZVs satisfy double
shuffle relations (lhara-Kaneko-Zagier 2006,
Racinet 2002).

@ based on the geometry of moduli space of curves:
The "KZ associator” (Drinfeld) is a generating
series for MZVs (Le-Murakami 1996). It satisfies
algebraic relations (Drinfeld 1991).
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The context

Relations between the two approaches

Thm (Furusho 2011, Deligne-Terasoma 2005 (announcement)).
The associator relations imply the double shuffle relations.

@ Ideas of (Furusho 2011): Associator relations take place in
Ups. Construction of explicit linear forms on Ups, based on
multiple polylogs. Combinatorics of linear forms.

@ Ideas of (Deligne-Terasoma 2005): Geometric constructions
with moduli spaces M4 and My 5. Perverse sheaves on
these spaces. Redaction is still unfinished.

Remark: [Hirose-Sato 2018+] and [Furusho 2018+] give another
proof.

Today: New proof of theorem based on Deligne-Terasoma ideas. J
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Detailed plan: (1)

1) The double shuffle formalism

(

(1a) M2ZVs
(1b) Examples of double shuffle relations
(

1c) The double shuffle formalism:

o algebra WX and coproduct A’Y on it (harmonic

coproduct)
@ arank 1 module MPR over it and a coproduct AT over

this module
@ I'-functions I'(?)

(1d) Formulation of double shuffle relation in terms of double
shuffle formalism.
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Detailed plan: (2)

(2) Two comparison results and the main result

(2a) Betti version (W8, A;”, MB, A;“) of (WPR, Al’(", MPR, Ai‘f)

(2b) "comparison” operators c:omp(””’;7 : WPR _, WB and

(1, ®
(10),M DR B
com : MPR - M.
P
(2c) comparison results:

(algebra): for (u, ®) associator, comp™" brings AV to A

(1, @) #

(module): for (u, ®) associator, compglo()liVI brings A% to A;“

(2d) why the "module” comparison result implies the
associator-double shuffle implication (main result).
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Detailed plan: (3)

(8) Proof of "algebra” comparison result

(3a) Interpretation of A‘f in terms of moduli spaces M4 and Wiy 5
(Deligne-Terasoma)

(3b) Interpretation of A;’V in terms of moduli spaces M4 and Wiy s

(3c) Proof of comparison result based on study of
comp, o, : PaB — PaCD evaluated at ((e®)e)e
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Detailed plan: (4)

(4) Proof of "module” comparison result

(4a) Interpretation of AT in terms of moduli spaces M4 and Wiy 5
(4b) Interpretation of A;“ in terms of moduli spaces Miy4 and Wiy s

(4c) Proof of comparison result based on study of
comp, o, : PaB — PaCD evaluated at (o(ee))e
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The double shuffle formalism

Section 1:
The double shuffle
formalism
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Multiple Zeta Value (MZV)

Forkiy.... k.1 =2 1and k,, 2 2,
1
{Uetsskn) i= Y ——— € R:MZV

k
0<ny <-<Hy, nll M
@ The sum converges iff k,, > 1.

@ m = 1: Riemann zeta value {(k).

@ m = 2: Double zeta value by Goldbach and Euler.

Double Shuffle relations for MZV’s
‘=" Shuffle + Harmonic product
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Shuffle product:

dsq ds, ds,
e.g. L(a)l(b) = f A— A-e- A
O<sy<<sg<l 1= 81 52 Sa
f dt, dt, dt,
X AN— Asee A —
0<t1<-<tp<l 1- t 153 lp

1
=Z f all shuffles

0
B i-1 Jj—1 ..
IR (V) A | 2

Harmonic product:

e.q. ;(a);(b)=2%~2,l,,=(z IR Z)kal,b

0<k o<l O<k<l O0<k=l O<I<k

= {(a,b) + {(a + b) + {(b, a).
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Examples of double shuffle relations
The double shuffle formalism (Racinet)

@ VPR := C(ey,e;) :free graded algebra over ey, e; of deg=1.
Coproduct A : VPR — (VPR)Y®2 .1 0, @1 + 1 Q e;.

@ Subalgebra WPR := C @ VPRe (— VPR),
Presentation: WPR is freely generated by y, ys,..., Where

Harmonic coproduct A} : WPR — (WP®)®2,
AVGn) =y @1+ 1@ yu + iri=n Vi ® Y1
equips WPR with Hopf algebra structure.
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The double shuffle formalism Examples of double shuffle relations

@ Quotient MPR := VPR VDR, and the canonical projection
. Then MPR is a free WPR-module of rank
1, generated by :=projection of 1 € VPR, Define
A s MPR - (MPR)®2 as the transport of A’Y under the
isomorphism Wpr — Mpg induced by action on 1pg.

Notation:
For ® € VPR := C({ey, e1)), set
- 1 n— n %
Lo(—e)™" := exp() —(@leg~er)ey) € V¥,

n>1

@, := can(Tp(—e;) '®) € MPR,
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The double shuffle formalism Formulation of double shuffle relations between MZVs

Generating series of MZVs:
k1—-1

Dz := 1+ Y (=1)"{k1sens o) - €7y el e
+ (terms in e, VPR + VPRgy) € VPR,
Relations:
shuffle relation: A(®gz) = @z ® Bk (relation in (VPR)®2)
harmonic relation: &T((I)KZ,*) = gz, . @ Pkz, . (relation in
(j@(DR)@Z)_
One says that the collection of commutative variables

¢ (ky, ..., k,) satisfy the double shuffle relations iff they satisfy the
above relations with @k, replaced by

® :=1+ Y (=D (knyeves k)lel ey el ey
+ (terms in e; VPR + VPRe).
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Two comparison results and the main result

Section 2:
The comparison results
and the main result

Benjamin Enriquez (Strasbour

Double shuffle relations for MZVs 26th. July, 2019 17/49



Betti version (W&, A:", MB, A;V[) of (WPR, AI", MPR, AT)
@ Algebra V® := CF,, where F, := free group over X,, X;.
Coproduct A: Xy, X, are group-like.
@ Subalgebra W® := C® VB(X; — 1) (— VB).

Presentation: generators

with only relations .
Coproduct on W8 is A:" : WB — (WP)®2 given by

W,ytly — ytl +1
Aﬂ (X1 )—X1 ® X,

w +\ - + + + +
AT =Yi@1+10Y:+ ) YOV,
k+l=n

equips W? with a Hopf algebra structure.
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Two comparison results and the main result ESEURCEINTAVAN A;’V ,MB, A;M) of (WPR, Al’v , MPR/ Ai"[)

@ Quotient vector space MP® := VB/VE(X, — 1). Set
:=projection of 1 € V. Then M® is a free WB-module
generated by 1g. Define
A;"[ : MB - (V(B)®?
as the transport of A;’V : WB - (WP)®2 ynder the

isomorphism W® — M?® induced by action on 1g.
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Two comparison results and the main result ompglo(;gw : MPR _, (B
:

Comparison operator compgl);r)’ : WDR _; B

Algebra isomorphisms: For (u, ®) € C* x G(VPR)
(notation: G(—)=group of group-like elements of a Hopf algebra),
define algebra isomorphism

compzlll)’q\:) : VB VPR

Xo P ® - exp(uey) - @7,  X; - exp(ue).

when (u, ®) = (2xi, ®ky), this is the period isomorphism
Cr®(Moa, D — Ca R4, )" between the Betti and De Rham
fundamental group a]Igebras.

@,v
(1, @)

compizgf : WB - WPR,

The isomorphism comp restricts to an algebra isomorphism
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Two comparison results and the main result ompglo(;gw : MPR _, (B
:

Comparison operator comp(qll‘ziW : MPR - Jv(B

Module isomorphisms: For (i, g) in C* x G(VPR), define
comp'” : VB 5 VPRO s comp™Y (v) - @.

(1, @) (1, ®)

when (u, ®) = (2xi, ®ky), this is the period isomorphism
Cr® (Mg, T, )" - CaPR(Wiy 4, T, 0)* between the Betti and De
Rham fundamental groupoid modules.

This isomorphism factors to an isomorphism

M B \ DR
: - .
comp, . M M
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Two comparison results and the main result omp;llo(:;)m : MPR _, (B

We summarize the situation as follows:

algebras modules over VB/PR
morphisms WE/DR c, B/DR VB/DR , JV(B/DR
coproduct Ay/Ax A/A A;‘“/Af‘f
, W M,V a0),v M
fake B/DR isoms comp; . | comp - | comp - _}comp(p’q))
geometry 1 (Mg a3 1) 71 (Mo 43 1, 0)
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Associators and comparison isomorphisms
Associators and comparison isomorphisms

Definition: (Drinfeld 1991, Furusho 2010)
An associator is a pair (u, ®) € GPR = C* x (VPR)*
(recall that (VPR)* = C({eg, €1))*) such that

® (Pleg) = (Pleyr) =0

o (Dleger) = /24,

o A(D) = ®R D,

o QMSPS2PBIPBIPIB = 1 jn (UPs)™.

Example: (u, ®) = (2ni, Pkz) is an associator.
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Associators and comparison isomorphisms
Main property of associators (Drinfeld 1991, Bar-Natan 1998)
An associator (u, @) gives rise to a functor
comp, o) : PaB — PaCD

between the categories of parenthesized braids and parenthasized
chord diagrams.

Specializing this functor to sets of morphisms, one gets a system
of isomorphisms of topological vector spaces

comp&’fﬁ;g : Crry (M3 &, B) - Cr)® (Mo 03 d, B)

where @, b are tangential base points of My,.

Particular cases: compZ’i)) (n=4,@b) =d,71),

compZ;f;)‘;) (n=4,@0b) = d,0).
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”Algebra” comparison resuit

If (u, @) is an associator, then the following diagram commutes
AW
B — (WB)@Z
compz‘m l ~ ~ l (comp(l"\;p))®2
A)DR A)DR\&2 = A)DR\&2
WPE — (WP — = OWP%)

Fere To(-e1 ® Dla(~1® e1)
Boi= —— L2 0T T ¢ (WPR)S2X,
Fp(—e1®1-1Q®e)

The proof of this result will be an ingredient in the proof of the next
result:
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”Module” i |
oduie comparison result

If (u, @) is an associator, then the following diagram commutes
AM
V(B # (JQ[B)éz
compia | :l(comp(lj‘f@)él
(DR JQ(DR &2 = J\’}(DR ®2
M _&1/[)- ( ) Bl ( )

Why the "module” comparison result implies the associator-double
shuffle implication (main result)?

Apply to 1 € ME: Az‘“(lB) = 1%

Then comp(ljqu))(lg) = ® - 1pg = can(P).

So AY(can(®)) = B, - can(®)®*. Hence A}(®,) = ®%*. D
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Proof of "algebra” comparison result

Section 3:
Proof of "algebra”
comparison result
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- x
Proof of "algebra” comparison result  [(BElle[lERIIEEeI)EN]

Interpretation of A‘:’ in terms of moduli spaces M, 4 and M5

(Deligne-Terasoma)

Recall that
V])R = ULienll)R(ﬁJioA; tl).

Set:
, 3 [
@ VPH(Mis) 1= UPs = ULien)®(Mys; t1r) <> V¥
€23,€12 < €9, €1
{=algebra morphism

@ pr; : Mps » My, (i=1,...,5)
= pr; : VPR(My5) » Vpr
pr; are algebra morphisms and prs o £ = id
pry ¢ VPRMy5) = (Vpr)®? defined by
pry, := (pr; ® pry) o A.
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- x
Proof of "algebra” comparison result  [(BElle[lERIIEEeI)EN]

@ VPR®MR)5) ~ ker{VPR(Rys) > VPR) = VPR(IR, 5)®3
= @ : VOR(My5) = M3 (VPR 5))
@ is an algebra morphim.

@ row; := (e1 ®1, -1®ey, 0) € Mia((VPR)®?)

1®1
@ col; := {—1 ® 1] € M3, ((VPR)®?)
0
Define an algebra morphism
p VPR = My(VPR))

M3(pry;)

as VPR 5 VPR(Miy 5) 5 M;(VPR(My5))) — M3((VPR)®2),
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- x
Proof of "algebra” comparison result  [(BElle[lERIIEEeI)EN]

Proposition: The following diagram commutes

rowp-(—)-coly

VoR — M3((VPR)®2) (VPR)e?
Ad((e]"H)®?
(=)er|= VDR{&}@Z
WPR.+ — (WY)R)®2
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- x
Proof of "algebra” comparison result  [(BElle[lERIIEEeI)EN]

Proof. (a) Define algebra (VPR ., ) by
a-« b:=a-e-b.
(b) Show that p(e1) = col; - row; and derive that

(VPR ., ) 5 pMy((VPRyS2) NS (ppRye2 g g
algebra morphism.

(c) The map (VPR,.,) A WPR is also an algebra

morphism.

(d) So if VPR is equipped with -, all maps in diagram
are algebra morphisms.

(d) Prove commutativity on each e: by direct
computation.

(e) Conclude from fact that (VPR,., ) is
algebra-generated by the eg, n20. O
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Proof of "algebra” comparison result Interpretation of AHW in terms of modulispaces M4 and My 5

Interpretation of A;’V in terms of moduli spaces M, 4 and M5
Recall that V® = C(XZ', X*') = CF, = Cr}™ (W3 D),
WE=CeV*- (X, - 1.
Set:
@ VE(Mys) := CP; = Cx ™ (M55 ta1) & ym

X23, X12 — Xo, X3

¢ is an algebra morphism.

@ pr,:Mys» My  (i=1,...,5)
= pr : VEMys) » Vp

pr is an algebra morphism and pr o ¢ =id
— 5 =

pr :=(pr ® pr)oA.

—12 —1 —_2
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Proof of "algebra” comparison result Interpretation of Aﬂw in terms of modulispaces M4 and My 5

pr
@ VEMys) ~ ker{VE®Miys) » VB} = VB(IR)5)®
= w: VEMys5) = M3(VEDy5))
@ is an algebra morphism.

@ row, := ((X1 -1, 181 -X)), 0) € Mi,3((VB)®%)

1®1
@ col; := [—1 ® 1| € M3, ((VP)®?)

- 0

Define an algebra morphism

PV o My(VH)

Ms(pr )

as VP 5 Vi) 5 Ma(VE(@ys)) — Ma((VP)e).

Benjamin Enriquez (Strasbourg University) Double shuffle relations for MZVs 26th. July, 2019 33/49



Proof of "algebra” comparison result Interpretation of Auw in terms of modulispaces M4 and My 5

Proposition: The following diagram commutes

ow_+(—)-col
row -(-)-col,

VB M;((V®)®?) (Vf)®2
Ad((X-D'e-x7H™)
(=)X1-D | = [m]®2
WB,+ — (WB)®2
#
Proof. Similar to De Rham case. O
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Proof of "algebra” comparison result Proof of "algebra” comparison result

Proof of ”algebra” comparison result

Follows from the commutativity of the following diagram

AW
W ’ (WB)e Ve[
S1
(=) z\& X P o l‘()_Wl'(—)'C_Oll o Ad((Xl—l)’l(l—Yl_l)’l) 1 .
VB M3((V®)%%) (VB)s2 (VB[ﬁ])®2
comp("" lM.;«comij‘q‘,;)@Z) (comp‘u‘,f;,f;ﬁll
comp "Dl 83 MyPPRE)  sd (comp{}')@2 ss (VPRL)E
3 > — e1+/fj
S2 Ad(k o) Pu)) B ml'(_)'B“’eWhl)_] 1
ADR {’DR l. DR\ &2 VDR)&2 VDR)&2 VDR _L1)&2
,(W (Sm "’ MO e VT emy T Y G o e
g / 86 I
A (WDR)®2 (WDR[%])@Z

WPR
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Proof of "algebra” comparison result Proof of "algebra” comparison result

where

€1 = €1®1, fl o= 1®e1, X1 o= X1®1, Yl o= 1®X1,
elter —1 1 = e Mh ellei+fv) _ 1
u:=Bg- . , v=u'1-—,
€1 i er + f1

Ko 2= e WPND(eg, e)D(fy, f1) € (VPR)®HX,
Py € GL3((Ups)")

is defined by
x;5—1 €1s
comp Y | x5 — 1] = Pyo) | €25
x35—1 e3s
and

Pluw) i= Prp(Pus) € GLy(VPR)®2),
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Proof of "algebra” comparison result Proof of "algebra” comparison result

Commutativity of big diagram implies that of

&w
(WB), —- WB[ 182
compzzg’;’ (compzlz:;/)v)@’2
(WDR)+ WDR[ é ]®2
(=) B (-)Bo i~

(WDR)+ = WDR[ é ]6;2

: W, e _ etfi . .
which by A" (zm) = =mp— implies comm. of

ete1+f1)

"algebra” comparison diagram.
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Proof of "algebra” comparison result Proof of "algebra” comparison result

@ Comm. of S1, S6: geometric interpretations of A;“’, A

(1) V

@ Comm. of S2: algebra morphism nature of comp , its

(1) W

compatibility with comp , its property X; - e"”1

@ Comm. of S5: same properties of comp( )’ |dent|t|es
relating u, B, €1, f1 and v, Bg, €1, f1.
@ Comm. of S3: p (resp. p) is based on choice of basis

(€is)i=1,23 (resp. (xis — 1)i=12,3) for ker(Ups — VP®) (resp.
ker(CPs — V®)), and P, expresses comparison of these
bases.
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Proof of "algebra” comparison result Proof of "algebra” comparison result

@ Comm. of S4. is a consequence of the equalities

Dy 5
(comp; " 7)®(col ) = ki) Pu) * cOly -,
(comp™Y)®2(row ) = u - row; + (Ko Pipary) ™"

p(]l,d)) 1 - 1 (ll’q)) (ﬂad)) 9

whose proofs necessitate explicit computation:
(a) one expresses the braid group elements x;s
\ (‘_J ||

I
T == i == ¢

a b

—_——— ——

\ N
O-Q,b =/\ G Ba+b
\\\

Benjamin Enriquez (Strasbourg University) Double shuffle relations for MZVs 26th. July, 2019 39/49

X15 = X25 =

IR
as products of o,



Proof of "algebra” comparison result Proof of "algebra” comparison result

(b) this enables one to compute explicitly

U(i3)" = Clleis,i = 1,...,4));
(c) one derives from there the computation of P, a);

(d) one further derives the computation of P, a);
(e) one plugs the obtained value into the first identity;
(f) the second identity can be similarly obtained. 0
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Proof of the "module” comparison result

Section 4:
Proof of "module”
comparison result
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Proof of the "module” comparison result Interpretation of Ai"[ in terms of moduli spaces Mg 4 and My 5

Interpretation of Ajf in terms of moduli spaces M, 4 and M s

Set
0

colp :=|—€1- 1§§ € M3x1((MDR)®2).

@2
er-1
1* “pr

Proposition: The following diagram commutes
VDR p M3((VDR)®2)
can (elfl)‘lrowl-(—)-colo

MDR — (MDR)®2 (MDR[é])QDZ
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Proof of the "module” comparison result Interpretation of Ai"[ in terms of moduli spaces Mg 4 and My 5

Proof.
(a) Show that p(eo) -coly = 0.
(b) Derive the existence of map & : MP® — (MPR[;-])®* such that

VDR p Ms ((VDR)®2)
can l(el f1)~row;-(=)-coly
MDR - (MDR [ é ] )®2

commutes.
(c) Using p(ey) = col; - row;, show that é is compatible with

AI" : WPR , (WPRY®2 gnd module structure of MPR over WPR,
(d) Compute (e fi) 'row; - coly = lﬁi to get (1pgr) = lgi.
(e) Derive 6 = A%, O
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Proof of the "module” comparison result Interpretation of A;"’[ in terms of moduli spaces Mg 4 and My 5

Interpretation of A;V[ in terms of moduli spaces M, 4 and M s

Set
0

col = | A= X0¥[' 12 | € My (M®)22).
1-XxHy'. 1%

Proposition: The following diagram commutes

P
Vb - M;3((V®)®?)
can I(X1—1>-1(1—Y;‘)-lro_wl-(—)-c_ol0
NMB — (MB)®2 - (MB[ = ])®2
—H
Proof. Similar to De Rham case. O
Benjamin Enriquez (Strasbourg University) Double shuffle relations for MZVs

26th. July, 2019 44/49



Proof of the "module” comparison result Proof of "module” comparison result

Proof of "module” comparison result

Follows from the commutativity of the following diagram

AM
. 2y

MB (J\?[B )®2

VB e M3((f73)®2)

can (Xl—1)"(l—Yl_l)“rnwl-(-)-cul
~ T1
P

(Ol s e

V,(10)\&2
M3((comp ~( "))
M V,(10) SDRAG - M &2
compwv‘b) Comp(lm,) T3  M;((VPR)®2) T4 (Comp(”’@))
T2 l (K(}l,‘l’)P(}l~'l’))_l '(-)-Q;‘lﬂ,)
PR e Ms((f\”;DR)@Z)
can _ 1)~ rows-(-)-coly
TS
V(DR V(PR \®2 VCPR[ L 1)®2 V(DR[ L 1)&2
M AM Oy VR D To(epla(=/1) R D

* T (—e1—/1) -

where Q.0 € GL3((VPR)®2) is given by

0" = ®(e1,e0)P(f1, fo) - K(p,(l)); o * P(D).

(u,®)
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Proof of the "module” comparison result Proof of "module” comparison result

@ Comm. of T1 and T5: by the above geometric

interpretations of A, A;V[.

@ Comm. of T2: by construction.

@ Comm. of T3: states equality of two maps
\'\7B — M3((\A7DR)®2).
These maps are module morphisms over two
algebra morphisms VB — M3((VP®)®2) which are
two parts of S3 and turn out to be equal due to
comm. of S3.
The value taken by Qo) guarantees that these
maps agree on generator 1 € VPR,
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Proof of the "module” comparison result Proof of "module” comparison result

@ Comm. of T4 is a consequence of the equalities

(compPY)®((X; — D7'(1 - Y1) row )
1 —_1

(1, @)
F(I)(_el)r(p(—fl) » _ ,
= . ) Iz .
To(—e; — fl) (elfl) row; (K(y,(l)) (y,(l)))

and

(10),M\ @2 _ 10,V\®2 11 | -1
(comp(y’q)) )®*(col ) = (compwp)) 1) K(ﬂ’q))Q(ﬂ’(D) col,.

First equality: an immediate consequence of already proved
equality (proof of S4).

Second equality: explicit computation parallel to previous one but
dealing with (e(ee))e rather than ((ee)e)e:
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Proof of the "module” comparison result Proof of "module” comparison result

(a) one expresses the braid group elements x;s as products of o,
(same expressions as before except for x,s);

(b) this enables one to compute explicitly comp
elements of U(f3)" = C{{ejs,i = 1,...,4));

(c) one derives the computation of R(,.o) € GL3((Ups)") defined by

x5 —1 €15
Comp(.(..)). X5 — 1] = R(/t,d)) «]€ss

x3s—1 ess

(o(e0))e

) (xis — 1) as

d) and therefore of E(y,@) := pr(R,0) € GL3((VPR)82),

(

(e) one proves that Q(:q)) = ®(e1,e0)P(f1, fo)k oy Riuo)

(f) one then computes Q(;lq)).

(g) one uses the obtained expression of Q(;ll(p) to explicitly prove

wanted equality. O
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