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Multiple zeta values (MZV)

Definition
For natural numbers s1 = 2, S, ..., S; = 1 the sum
(51, 81) S -
81, ---981) = Z 51 )
ni>...>n;>0 " o 0 o

is called a multiple zeta value (MZV) of weight s1 + ... + s; and depth .

@ The rules for the product of infinite sums imply that the product of MZV can be expressed as a
linear combination of MZV with the same weight (stuffle product).

@ MZV can be expressed as iterated integrals. This gives another way (shuffle product) to
express the product of two MZV as a linear combination of MZV.

@ These two products give a large number of Q-linear relations (extended double shuffle
relations) between MZV. Conjecturally these are all relations between MZV, e.g.

C(2,3) +3¢(3,2) +6¢(4,1) "= ((2) - ¢(3) "£° ¢(2,3) + ¢(3,2) + ¢(5) .




Dimension conjectures for M Z
Consider the formal powerseries

Eo(z) = 1fm2 =2+t +2%+ ... "even zetas",
23
Os(z) = 7242 = R A LA "odd zetas",
212
S(x) = =25 (1=2°) = 22 4 210 4 18 4 "period polynomials".

Broadhurst-Kreimer Conjecture

The Q-algebra M Z of multiple zeta values is a free polynomial algebra, which is graded for the
weight and filtered for the depth ("depth drop for even zetas"). The numbers gy ; of generators in

weight & > 3 and depth [ are determined by

BK(z,y) = Z dimg (gr}fl’D MZ) akyl = (1 + Ea(z) y)

k,0=0

where

BK(z,y) = (1 + Eg(x)y)

k=>3,1>1 (

1

1 —Os(x)y + S(z)y* — S(z)y*

1 — .’L‘kyl)gk'l

e



Dimension conjectures for M Z

Zagier’'s Conjecture

The following identities hold:

1

Zag(z) = Z dimg (gr,zv MZ) z* = PP

k=0

Zagier’s conjecture is implied by Broadhurst-Kreimer’s conjecture. In order to neglect the depth
we just have to set y = 1 and get

1+E2($) 1+ 1312 1
Zag(x) = BK(z,1) = 1= 05(2) =1 N =1 5
l1—x

Brown’s Theorem

The Q-vector space of multiple zeta values is spanned by the "23"-MZV’s, e.g. by those
C(81, ...y 81) with s; € {2, 3}.

By Brown'’s theorem the dimensions in Zagier’s conjecture are the maximal possible ones.



MZV’s and Lie-Algebras

Zagier's Conjecture for MZ < — — — — — — — — > double shuffle Lie Algebra 0s
A I
I I
I \
Broadhurst-Kreimer Conjecture for M Z < — — — — > linearized double-shuffle Lie-Algebra [s

The connection to this workshop: We have gtt < 0s <— £v.

Since we don’t know all relations in the algebra multiple zeta values M Z < R, we consider
formal multiple zeta values MZT instead. Roughly this algebra is

Mzl = <§f(81, ces sl)}l >0,s > 1>Q/{ LLJ, extended double shuffle, ¢/ (1) = 0}

Theorem (Racinet, Ecalle)

We have a non-canonical isomorphism
MEZT = Q¢! (2)]®U(vs)

in particular MZf is a free polynomial algebra.




Conjectures by Ihara and Zagier
Conjecture (lhara,...)

The Lie algebra 05 is a free graded Lie algebra with one generator in each odd degree k > 3.

Corollary

If 05 satisfies Ihara’s conjecture, then MZf satisfies Zagier’'s conjecture.

Idea of Proof: Since M2/ =~ Q[¢/(2)] @ U(ds)” we have

s}
> dim MEZ] % = Hyyzr(2) = Hoper(2)(@) - Hygos) ()
k=0
1 1
1—221—23 —2% -2 — ..
1

1—a22—g3°

Main-MZV-Conjecture

The map M Z/ — M Z given by ¢T(s1,..., 81) = (¥ (s1, ..., 51) is an isomorphism.




Multiple g-zeta values
Many of the most basic concepts in mathematics have so-called g-analogues, where ¢ is a formal
variable such that the specialisation g = 1 recovers the usual concept, e.g. Gauss g-integers

(nly=1+q+...+q" ' =

We will study the following g-analogues of multiple zeta values® .

Definition [(modified) multiple g-zeta value]

For natural numbers $1, ..., s; = 1and Q1 (¢) € tQ[t] and Q2(%) ..., Qi(t) € Q[t] we
define

Z Q1(q") ... Qu(g™)

Cq(sl""’sl;Ql""’Ql) = (1 7qn1)51 (]_ fqnl)sl

€ Q[[q]]-

ni>--->n;>0

This series can be seen as a g-analogue of multiple zeta values, since we have for s > 1

lim(1—¢q)" 1 (s1, ooy s3 Q1 -, Q1) = Q1(1) ... Qu(1) - ((s1, ..., 1)

qg—1

"Bachmann, Kiihn: A dimension conjecture for g-analogues of multiple zeta values, arXiv:1708.07464 [math.NT]
Bachmann: Multiple Eisenstein series and g-analogues of multiple zeta values, arXiv:1704.06930 [math.NT]


https://arxiv.org/abs/1708.07464
https://arxiv.org/abs/1704.06930

Algebra of multiple g-zeta values

Definition
We set ((J; &) = 1 and define the algebra of multiple g-zeta values to be the Q-algebra

Zq :<€q(517-~-a3l;Q17~-~7Ql) |l>0, S1y---,91 = 1a deg(Q]) <51>Q

Indeed Zq is a Q-algebra, for example, it is
Cq(513Q1)-Cq(52; Q) = Co(s51,52; Q1, Q) +Cy (52,515 Q2, Q1) +(y(51+52; Q1-Q2)
and clearly deg Q1 - Q2 < 51 + s2ifdeg Q; < sjforj = 1,2.

Caution: s1 + - - - + 5; does not give a good notion of weight for the (4. Also [ will not be used to
define the depth. Instead, we will consider a class of g-series which also span the space Z, and
use these series to define a weight and a depth filtration on Zq.




Subalgebras of Z,

For d > 0 we define the subspace
Zq,dz<Cq(815"'78l;Q17"'7Ql>EZq | deg(Q])gsj_d>Q
So in particular we have Z, = Z,0and 24 441 C Z4,4-

27 = (Glsre 5 Qu Q) € 2y | Qi Qe QU] )

For the spaces defined by
0 =240 Zqa

itholds Z)' = Z_ yand Z_ ;. < Z/ ;.

Proposition

All of the above spaces are subalgebras of Zq.

These spaces recover previously known multiple g-zeta values, e.g. Z, 1 is the Bradley-Zhao
model, Z_' is the Schlesinger-Zudilin model and Z, its extension by
Ebrahimi-Fard-Manchon-Singer, Z ; is the Okounkov-model, ...




Bi-brackets
For natural numbers s1, ..., s; = 1 and rq, ..., 7; = 0 the bi-brackets are defined by

S1y...48] n?Psl—l(qnl)-'-n;lPsl—l(qnl)
:H. EQ q 7
(l] Y ATy e <ol

ny>-->n;>0
where Kk = (7“1!(31 —Dor!(s — 1)!)_1 and the Px_1(t) are the Eulerian polynomials
defined by
Pr_1(t)

= Y dlee,
_+\k
(1 t) d>0

Py(t) = Pi(t)=t, Po(t)=1>+t, P3(t)=1>+4t*>+1t,
L1} q" 1 n2q™?
[0,1]q Z (1 —gm)(1—qn2)’

n1>n2>0
[4, 2, 1] B 1 Z n3 (g™ +4¢%™ + ¢™) - q"2 - niq™
2,0,5J), 3!-2!.5 D=0 (1—qgm)t-(1—qgm)2.(1—qmu)t "~



Multiple divisor sums and modular forms

S1y-- 581

lfry = =r; =0,weset (s1,...5)q = [0 0

] and we find
q

[81,..-,3l]q:(81_1)!.1“(&_1)!2< Z Ufl...vfl>qn.

n>0 uivi+--+uv=n
wuy>-->u;>0
V1,...,01>0

We call the coefficients 05, —1,....5,—1 (n) multiple divisor sums. In the case [ = 1 we get the
classical divisor sums 0,1 (1) = >, d"! and

1
(k)q = G- > ok1(n)g™.

n>0

These function appear in the Fourier expansion of classical Eisenstein series which are
(quasi)-modular forms for S Lo (Z), for example

1 1 1

G2=_ﬁ+(2]q’ G4:@+[4)q7 G = ——— 6 EZ!]'



Bi-brackets as g-multiple zeta values

Proposition (Bachmann-K.)
We have

2y ={(51,--,810)q |12 0, 51,..., 50 2 1),
Ze1 =51, 58 q|120,31,...,sl>2>Q_

In addition, Z' is closed under the g-derivation qdiq.

The (bi)-brackets have also direct connection to multiple zeta values, since they behave like
multiple g-zeta values:

Theorem (Bachmann-K. , Zudilin)

Assumethat sy > 71 +lands; = r; + 1forj = 2,..,1. Then

. s1+...4s [ S1,---5 81 1
lim (l—q) ! ! [ B ] = ﬁC(SI_ThmaSl_TZ)
q—1 Tl T35 ) riteorg!

Remark: Another very interesting connection to MZV is given by the Fourier expansion of
multiple Eisenstein series.




Bi-brackets and Z,

Theorem (Bachmann-K.)
The following equality holds

T1y...,7T1

S1y..458
Zq=<[1 z] |1207817...,8121,r1,...7rl>0>Q_
q

Idea of proof:

1,1 B q™ noq™?
[071]q Z (1_(]"1) (l_an)

ni>ng>0
_ Z qn1 qnz N Z qn1 qnz 1— qn3
it =gm) (I =qm2) A (I=g™) (1—q") (1 —q™)

= Co(1,15¢,8) + Co(1,1, 158, 8,1 — t) .

Depth- and weight-filtration

We endow the space of multiple g-zeta values Z, with the depth- resp. weight-filtration induced by
the notion of weight and depth defined on the bi-brackets

13/39



Bi-brackets - conjectures

Conjecture w.r.t. the algebra structures

(S1) The algebra Zq is isomorphic to a free polynomial algebra.

Conjectures w.r.t. the vector space basis

(B1) Every bi-bracket equals a linear combination of brackets, i.e. Z; = Z,.
(B2) Every bi-bracket equals a linear combination of "123"-brackets.

Conjectures w.r.t. the graded dimensions
(D1) We have

1
T l-z—22—23 + 28+ 27 + 28 +2°

Z dimq gr)¥ (Z,)2"
k=0

14/39



Conjectures w.r.t. the graded dimensions
(D2) We have

D1 dimgriP(2) 2Fy' = x (2, y) - xalz,y),

w,1=0

with

xa@y) = 1/(1 = a1@)y + 02(2) ¥ — a(2) y* — as(@)y* + as (@) 4" )

a1(z) = D(z) O1(z)
a(z) = D(x) ) dim(M;(SLy(Z))? 2*
k=4

as(z) = D(z) 2S(z) = as(x)

D(z) ). dim(Sk(SLy(2))* =
k=12

aq(z)

with D(z) = 1/(1 — 2?), O1(2) = z/(1 — 2?),S(x) = '2/((1 — 2*)(1 — 2)) and

2 LC12

Xp(z,y) =1+ 1 —22) Y+ (1—22)(1—2%)(1 —af

2

)Y




Bi-brackets - evidences for the conjectures

There are obvious implications, e.g. (B2) == (B1) and (D2) == (D1). If we assume that the
lower bounds obtained by the numerical calculations equal the actual dimensions, then the
conjectures hold within the range of our experiments. In particular for Conjecture (D2) we have

as(z) = Z az)fgack mod 32
k

asz(z) = 2 az)fgxk mod 22
k

as(z) = Z aZﬁ’xk mod z'°
k

as(x) = Z azg)zk mod z'°
k

Theorem (Bachmann-K.)

The conjectures (B1), (B2) and (D1) hold for all weights k < 7, i.e. every bi-bracket is a linear
combination of "123"-brackets and there are exactly as many linear independent as expected.




g-MZV’s and Lie-Algebras

Refined conjecture w.r.t. the algebra structures
(S2) We have a decomposition of Q-algebras

Z, >~ Mq(SLy(Z) ® A,

moreover A equals the graded dual of the universal enveloping algebra of a bi-filtered Lie-algebra.

There are Lie algebras 3q and [3q, defined within Ecalle’s theory of bimoulds, that very likely
correspond to the associated graded of A.

weight-graded dimension

conjecture for 2, <—-——- - - - > partition shuffle‘ Lie Algebra 3q
A |
I
| \

weight and depth graded v

dimension conjecture for 2, < — — — — > linearized partition shuffle Lie Algebra [3q




Moulds

Let A be an alphabet and denote by A* its words. A Mould M ® is a map from A* to a Ring R.
Observe there is a bijection between moulds and non-commutative power series

{M*: A* - R} =~ R((A)),
since the coefficients of Y, 4« (M|a) a € R({A)) determine a mould M uniquely.

Example 1
Let A = {a1, ag, ...} be an alphabet. Let R = k[[u1, us, us, ...]] and

M = (anfl)va"')
with fo € k and fi(u1, ug, ..., u;) € k[[u1, u, ..., u;]]. Then we view M as mould via
M®: A* > R

Ay Ay .- Ay > fl(uilvuiza "'auil)-

By abuse of notation we just write M (u;, , iy, ..., U;, ) instead of (M |a;, @i, ...a;, ). Thus, the
example explains the meaning of Ecalle’s definition:

A mould is a collection of functions depending on a variable number of variables



Alternal moulds

Key remark

Most properties assigned to moulds correspond to functional equations.

Given a sequence (f1(u1), fa(u1,u2), f3(u1, us, us), ...) we use the notation
fi(u) @ fr(wjp, s ug,) = fran (g, ugy, o ug,).
to define recursively a set of equations with the initial condition 1 W f = f L 1 = f and
Fr(ut, ey ) W fs(Upaty ooy Upys) =
fi(ur) @ (fr—l(u27 ey Up) W fs (Ui, ...,u,«+s))
+ fl(uT_H) @ (fr(ul, ...,ILT) LU fs_l(ur+2, -~->ur+s)) .

We say a mould (f1, fa, f3, ...) is alternal, if for all 7, s = 1 we have

fr(ur, oy ttp) W fo(Upgty ooy Upgs) = 0.

Note for example:

fi(un)wifo(ug,uz) =0 <= fy(ui,us, u3)+ fa(uz, u1,us)+ f(uz, us, ur) = 0.

19/39



Bimoulds
Abimould M = (fo, f1, f2, -..) in the pairs of variables w; = (Zz) is a mould
M* : A* — R = ]{)[[U17U1,U2,02,U3,03, ]],

such that fo € k and f; € k[[u1, v1, us, va, ..., u;, v;]] forall I > 1.

We will use the notation

M |ai, @iy..iy) = M (Wi, Wiy, ooy wi,) = M (20%0) = fy (w01, oo Uiy, Vi)
(M] ) = M( ) i) = )
117"'7 'Ll

There are symmetries of moulds M *® : A* — R induced by endomorphisms of R. The
involution swap is of particular interest for us

UL, U2,..., UL V,V1—1—Vg,...,V1 —V2
swap (M ( ) ) = )
p( V1,V2,...,V] ur+...fFup,ur U —1,..,u1

An alternal bimould M (%) is alternal w.r.t. to both set of variables simultaneously.

Any mould M (u) as in Example 1 becomes a bimould by setting M (w) = M(Z) = M(u)
A mould M is bi-alternal if M (u) and M¥(v) = swap(M (u)) are alternal.




Alternil bimoulds

Given a sequence (fo, f1(w1), fo(w1,ws), f3(w1,ws,ws), ...) we use the notation
fi(ws) @ fr(wgy, s wj,) = fran(wiy, Wy, s wy,).

to define recursively a set of equations with the initial conditon 1 % f = f*1 = f

fr(wla“ Wr41y -y errs) =

fs(
f( ) ( 1(’(1} 25 ) fS(wT+17"- wr+s))

+ fi(wrs1) @ (fr(wi, ..oy # fs— 1(wr+27~-~7wr+s))

o (
(U1+ur+1) fl (ul+ur+l)

@ (fr—l(w% (L) wT) * fs—l(wr+27 ---7wr+s)) .
U1 — VUr

Example:

f1 (m;w) _ f1 (u1 +u2)

U2

fi(wy) * fi(wz2) = fo(wi,wa) + fa(we, w1) +

U1 — V2
We say a bimould (f1, fa2, f3, ...) is alternil, if for all 7, s > 1 we have

fr(wy, ey wy) # fs(Wrgty .o, wWrys) = 0.




ARI Lie-bracket

Decompose a bi-word w = ( Lyeeer

) into w = abc with
V1,...,U1

a = (ul,-..,uT) b= (UT+1:-~~7u'r+s) c= <u7’+8+13"'7ul)
ViyeeyUp /) VUr41s.3Ur+s VUr4s+1,--5U1

then their flexions are defined by [c = cand a| = aifb = J,b] = bifc = J, |b = bif
a = ¢J and else by

bJ _ ( Ur41seyUrts ) [c _ (ur+1+---+u'r+s+17ur+s+2a--~aul)
Vp41—VUrgstlsUrts—VUrtst1/ ’ Ur4+s+1:,VUr4+s+2--+,U1

a'| _ (ul7-»»7“1‘—1aur+ur+l+--'+ur+s) lb _ ( Up41se-yUrts )
VlseeyUpr—1,Vrp ! Vr4+1—Upr,eyUr4s—Urp

Definition
The Ari Lie-bracket of two bimoulds is defined with above notation as
[4,B](w) = ) A(a[)B(b]) — Bla[e)A(b)) — > Alale)B(|b) — B(ale)A(b).

w=abc w=abc
b#Q a,b#J




ARI Lie-bracket

Example
Let F' and G be bi-moulds concentrated in depth 1, i.e., F'%1%1 = (,if [ # 1. Then
H = {F,G} ,p; is concentrated in depth 2, with
u,u2\ _ uU1,uU2 u1+uz,ul U2,uU1 +ug
H(’Ul,’Ug) - h(’U],’Uz) + h(’(}g,’l)l—’l)g ) + h(vg—vl,vl )’
where

h(arm) = 11 (0) 91 (53) — 91 (51 1 (33)-

V2




ARI Lie-bracket

Theorem (Ecalle)

(i) The set of bimoulds Bari equipped with the Ari Lie-bracket is a Lie Algebra.

(ii) Bariiflswap = {polynomial, alternal, swap invariant bimoulds with 7121 even} is a sub Lie

algebra.

The map d : Bari — Bari given in depth [ by multiplication with w1vy + ... + wv; is a
derivation, i.e., it satisfies the Leibniz rule

S[A,B] = [0A, B] + [A, éB].

Theorem

q .pol -pol

i) & (Barz%swap) c Barz%swap

(ii) AriZlOlal = {polynomial, bi-alternal moulds with 7121 even} via the natural map

. -pol -pol
03 A”al,ﬂ — Barzﬂ’swap

given by t(A)(w) = A(u) + swap(A)(v) is a sub Lie algebra.

Schneps: ARI, GARI, Zig and Zag: An introduction to Ecalle’s theory of multiple zeta values, arXiv:1507.01534 [math.NT/’]4 .



https://arxiv.org/abs/1507.01534

Another Lie-bracket

"Theorem" (in progress with L. Schneps)

(i) Bamd e = {polynomial, alternil, swap invariant bimoulds and 11 even} equipped with
the pairing
{A, B} = ganitpc ([ganitpoc(A), ganityec(B)])
is Lie algebra.
(ii) Amal*d {polynomial, alternal moulds with alternil swap and m even} via the natural map
pol -pol
Arlal*zl - B(JJ’ZZZ ,swap

given by t(A)(w) = A(u) + swap(A)(v) + Ca is a sub Lie algebra of Baril,”

il,swap"

Idea: By Ecalle the map gam'tpoc sends alternil to alternal bimoulds and gcmitpic is the inverse
map. Thus the pairing is defined on alternil bimoulds. The refinement for polynomial and
swap-invariant bimould holds for depth < 3 and is work in progress for depth > 4.

And (i), we proved yesterday. "



g-MZV and Moulds

For the multiple g-zeta values we expect the following

multiple g-Zeta values:

MZ %
\ = |
| \
\
AriP?! = 05C i Bari®®!
al*il | L 3\5{ il,swap
I I
|
! | \ \
\ A
AriP! = [\{5( [V C Bari?
al,al L 39 al,swap

It may be the case that [3q is the extension of +([s) and some extra generators corresponding to
period polynomials by the action of the derivation § on Bariailyswap,i.e.

[l

L1e<€|—>(5l( (I apls) @bc))

134



Bi-brackets - generating series

Key remark (Dimorphy)

The most inspiring feature of the bi-brackets is that there are two independent descriptions of the
product of two of them. One of them lifts the stuffle-product and the other the shuffle-product

Today we focus on the functional equations satisfied by their generating function.
Definition
For the generating function of the bi-brackets in depth [ we write

. 815+ 581 s1—1 s1—1 1 o
= [ ]Xl XLy Ly,
q

il gooo olFf
81,...,81=1 iy ?
715...,71=0

X1,.... X
Yl,"wY’l

The following results are based on the explicit description

! .
Z H wyy, _€qY
= ewiti — 2
1 — eXigui

uyp>--->up>05=1

X1,.... X
Yla"'a}/l




Bi-brackets - functional equations for generating series

Proposition (stuffle product - special case of the algebra structure)

X1| | X2 st X1, Xo X2, X1 P 1 X1 | | X2 )
Yi| Y2 Y1,Y, Y5, Y, Xi—- X \\Vi+Y 1 +Y,
(00)
By, k—1 X1 k—1 Xo
—(X; — X + (—1 .
+;;1 A A R A e

Theorem (Bachmann)

For all [ = 1 we have the partition relation

X1,..., X,
Yi,.... Y

. )/1+"'+}/27"'7Y1+}63Y1
Xlalel_Xh"')Xl_XQ

The partition relation (Ecalle notation: swap invariance) gives linear relations between bi-brackets
in a fixed depth, for example

s rt1 2.2 2.2 2,2 3.1 3.1
- oo n) T2 o) Tl " tloe) TPl
T)q §—1g )+ )q 0, q 1+ )q 1< )q >+ )q
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Bi-brackets - stuffle & shuffle product

The partition relation induces an involution P on the bi-brackets and this implies the double
shuffle relations (on the level of representatives)

a-b=P(P(a)-P(b)) Vabe2Z,

These double shuffle relations are indeed lifts of the double shuffle relations for MZV’s. )

B SE L),
o] ) (),
e T T )

Conjecture (Bachmann)

All linear relations between bi-brackets come from the partition and the double shuffle relations. J

29/39



From bi-brackets to bimoulds

Recall the generating series for bi-brackets satisfies the partition relation

X1, X
Yi,....Y

_ Y1++)/l77§/1+}/27yl
X, X1 — Xy, Xp — Xo

and the formula for the product

Xi,..., X
Yi,....Y,

XL X
B Y17"'7}/i

)

+ lower weight and depth terms.
Sh;

‘Xg+1,--~7 1
Yji1,.... Y

)

where |Shj denotes the sum over all (7, l)—shuffles. Now, if we decompose the generating series
into a sum of polynomials

X1
le 9
where « runs through a vector space basis of Zq modulo products and lower weight resp. lower

depth, then f* = (f{*, f&, ...) is a polynomial bimould? which is swap-invariant and alternil
resp. swap-invariant and alternal.

Xs
Y1,Ys |

.,) EZO[(floé(Xl,Yl),fza(Xl,Xg,Yl,YQ),...) 5

2after the coordinate change u; = Y; and v; = X;



Partition shuffle Lie-Algebra

Definition

We define partition shuffle Lie-Algebra 3¢ as the sub Lie algebra of Bamll e generated by the
sequences of polynomials coming from the generating series of bi-brackets modulo quasi-modular
forms, products and lower weight terms

For example we have in degrees 1 to 5 the elements

51 0= (1,0, ..),
530 = (u? +v?, vy — 2u9 — Uy + Uy, .0, ...),
52 1 = (u1v1, =201 + 209 — 2us, 0, ....),
550 = (uj +vf, ..),
54 1= (wor (uf +07), ...),
= ((wav1)?, ...).

these correspond to the classes of the bi-brackets [1] , [3] , [2] , [5] , [4] and [3]
0 q 0 q q 0 q 1 q 2 q
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Conjecture

The partition shuffle Lie-algebra 3¢ is generated by the §r,s and quadratic relations generate the
ideal of relations. The Hilbert-Poincare series equals

1
T1- D(z)0O1(z) + D(z)R(z)’

where D(z) = 1/(1 — 22), 01 (z) = /(1 — 2?) and R(z) = k§4dim(5k @ My)x*

Hyzq) ( Z dlmgr S( 5q)

For example the relation {51 0, 5214_1 0} = Oforalli > 1 gives the "Eisenstein-part".

Interpretation

If the missing link? from Z, to 3q is filled, then the weight graded dimension conjecture would be

implied, i.e. Z, = M(SLQ(Z)) ®U(3q) . Atthe level of Hilbert-Poincare series, the above
isomorphism is reflected by the identity

1
l—z—a22— 23+ 25 +a7 +a° +29
1 1
(1—22)(1 —24)(1 —25) 1 — D(2)01(x) + D(z)R(z)

aa . similarilv like Racinet's construction for MZV bv usina aporooriate "formal multinle a-zeta values"




Linearised partition shuffle Lie-Algebra

Definition

We define the linearised partition shuffle Lie-Algebra [3q as the sub Lie algebra of Barig’lswap

generated by the polynomials coming from the generating series for bi-brackets modulo
quasi-modular forms, products and lower depth terms.

The elements
Ers = (wrv1)*(u ™7 + 07 7°7)

correspond to the class of the bi-brackets |" | . More generally, there is a map — |
s 39k 39k,1
q

given by

(07 "'7Oa fl(ulavla ceey ULy Ul)7 Fyeeey Fy 03 ) = fl'
—
#=1-1

Using quadratic relations in [3q we obtain this way "new" generators in depth 4, e.g.,

{5370759,0} -3 {5570757,0} = (070707XA,07 *, )



Conjecture
The algebra U ([3q) has the Hilbert-Poincare series

1
Hy(39) (2, y) = 1—a1(z) y+az(z) y?—as(z) y*> —as(z) y* +as(z) y°°
with
a1 (z) = D(z) O1(x) "Generators &, 5 "
as(z) = D(z) Z dim (M (SLy(Z))? z* "Periodpoly Relations"
k>4
asz(z) = D(z) 2S(x) "Homology"
as(z) = D(z) Z dim (S (SLy(Z))? 2* "new Generators X cysp"
k=12
as(z) = D(z) 2S(z) "€1 p-orthogonality"

with D(z) = 1/(1 — 22), O1(x) = z/(1 — 2?) and S(z) = 2'2/((1 — 2*)(1 — 2%)).




Some evidence
@ Experiments using Pari/GP with parallel algorithms support the conjectures, e.g.
dim grz\fl’D (space spanned by depth 1 elements &, ;)

depth { 1 2 3 4 5 6

i jectured f
IS as conjecluredior eightk < | o0 52 35 26 23 18

@ Also we calculated in depth 4 the dimension of the spaces spanned by the new generators for
weight & < 26. For this we used a Computer at DESY Hamburg with 128 cores and 1
terabyte RAM. For k = 26 the calculation took about a week.

@ Some of the statements in that conjecture are actually proven, e.g.

Theorem
For the vector spaces R}, spanned by the relations in weight k& and depth 2 in the Lie algebra
spanned by depth 1 elements fr,s we have the generating series

as(z) = Z dimfﬁkxk Z dim (M, (SL(Z )) o (D(x) _ 1_71:”2

k>4 n=4

).

4

35

39



Idea of Proof: Explicitly these spaces are given by

R = {P € Q[u1, ug, v1, va] | homogenous, deg P = k — 2, such that

P(Uhuz) +P(u1+u2’u1) +P<U2,u1+u2) =0,

V1,02 V2,1 —V2 V2 —V1,V1
U1,uU2 u2,Ury u,u2y) _ euhuuz)
P(Ul,vg) +P(v2,v1) =0, P(vl,v2> _P(evl,uvg ,(6,#6{i1}),
U, U2\ v1,U2 U,u2) uy,v2
P(Ul,vg) - P(ul,vg) ) P(’Ul,’vg) - P(Ul,ug) }
We will use harmonic analysis for the symplectic Laplacian

A = 0y, 0yy + 0y 0O, ,

because following an idea of Zagier we can recover tensor products of period polynomials in the
subspace spanned by A-harmonic solutions of the above functional equation:
Consider P € Q[uy, uz, v1,v2] as afunction on (2 x 2)-matrices via

P:X = (")~ PX)=P(I").

V1,V2



Relations in depth 2

Let SLs act by the multiplication of matrices and then 2Ry, is given by the set of P such that

P(X)+ P(XU) + P(XU*) =0

P(X)+ P(XS) =
P(X') = P( )
P(eXe) = P(X),

where U = (1), 8= (L §)ande=(7"?). Wehave with A = 0, O, + Ou, o,
Ry = ker A @ (uq1v1 + ugvg)Rg—o.

Via the map
PX)~P((581) =P ((5)ew),
we identify

ker A = (f(a,5) @ gle,d) + 9(a.b) ® f(e,d) | f.g € Wy or f.g € Wy dg.
From dim W, = s + 1 and dim Wt = s; it follows the claimed identity

(sp +2)(sk+1)  (sp+1)s
k 2k n k2 k

dimker A =

= dim(M,,(SLy(Z))?.



The relations in depth 2 contain two families.

REis = {(5’” [£1.0s L(fs)]}, Rousp = {(V L(periodpoly relations for [s )} )

Because of the Jacobi identity the ideals of the relations mcw and R ;s have a non-trivial
intersection in depth 3. More precisely we have

[51707 9%Cusp] c [qua mEzs]

Lemma.

The generating series of the numbers of these "relations in the relations" in depth 3 equals CLg(I).J

In depth 5 we find the relations

Rpew = {67” [£1,0, ¢( new generators in depth 4 for [s )]},

Lemma. J

The generating series of the numbers of these orthogonalities in depth 5 equals a5(z).




Summary

@ The Q-algebra of multiple g-zeta values Z, is spanned by bi-brackets, i.e., g-series whose
coefficients are rational numbers given by sums over partitions. It contains all quasi-modular
forms.

@ The elements in Z, have a direct connection to multiple zeta values.
. . . . W,D
@ There are conjectural formulas for the dimensions dim gr. Z,, and other subspaces.

@ Conjecturally every element in Zq can be written as a linear combination of 123-brackets. In
particular Z; = Z,.

@ The algebra Zq is dimorphic, i.e. there are two different ways to express a product of
bi-brackets in terms of the generators. This gives rise to a lot of, conjecturally all, linear
relations between bi-brackets.

@ The functional equations satisfied by the generating series of bi-brackets modulo products and
lower depth give rise to a subspace in the Lie-algebra of bimoulds.

@ Conjecturally the generators of Zq give a basis of a Lie-algebra contained in the Lie-algebra of
swap-invariant, alternal, polynomial bimoulds.

@ Massive computer calculations give striking evidence for those conjectures.




