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1. Wirtinger presentation for closed braid
Wirtinger presentation
Let K be a knot in S3 and D be its diagram. Then the fundamental

group of the complement of K π1(S
3 \K) has the following presentation.

π1(S
3 \K) = 〈x1, x2, · · · , xn | r1, r2, · · · , rn〉

where n is the number of crossings or D, the generators x1, · · · , xn
corresponds to the overpasses of D and ri is the relation coming from the
i-th crossing as follows.

xj xk = x−1
j xixj xk = xixjx

−1
i xi

xi xj xi xj

Remark

The relation rn comes from r1, · · · , rn−1.
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1. Wirtinger presentation for closed braid
Presentation coming from a braid
Every knot can be expressed as a closed braid. For a knot K, let b ∈ Bn

be a braid whose closure is isotopic to K.
Let y1, y2, · · · , yn be elements of π1(S

3 \K) corresponding to the
overpasses at the bottom (and the top) of b. By applying the relations of
the Wirtinger presentation at every crossings from bottom to top, we get
Φ1(y1, · · · , yn), · · · , Φn(y1, · · · , yn) at the top of b, and the Wirtinger
presentation is equivalent to

π1(S
3 \K) =

〈y1, · · · , yn | y1 = Φ1(y1, · · · , yn), · · · , yn = Φn(y1, · · · , yn)〉 .

Φ1 Φ2 · · · Φn...

...
y1 y2 · · · yn

b
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2. SL(2) representation space

SL(2) representation of π1(S3 \K)
An SL(2) representation ρ of π1(S

3 \K) is determined by ρ(y1), · · · ,
ρ(yn) ∈ SL(2) satisfying

Φ1(ρ(y1), · · · , ρ(yn)) = ρ(y1),

· · ·
Φn(ρ(y1), · · · , ρ(yn)) = ρ(yn).

Let Ib be the ideal in the tensor C[SL(2)]⊗n of the coordinate space of
SL(2) generated by the above relations.

Theorem

C[SL(2)]⊗n/Ib does not depend on the presentation of π1(S
3 \K) and is

called the SL(2) representation space of π1(S
3 \K).

G. Brumfiel and H. Hilden: SL(2) representations of finitely presented groups.

Contemporary Mathematics 187 Amer. Math. Soc. 1994, Proposition 8.2.
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2. SL(2) representation space
Hopf algebra interpretation

C[SL(2)] is generated by a, b, c, d representing a matrix

(
a b
c d

)
.

C[SL(2)] has natural Hopf algebra structure coming from the group
structure of SL(2).

∆: C[SL(2)]→ C[SL(2)]⊗ C[SL(2)] with ∆(f)(x⊗ y) = f(xy),

S: C[SL(2)]→ C[SL(2)] with S(f)(x) = f(x−1),

ε: C[SL(2)]→ C with ε(f) = f(1).

Let Φ∗ : C[SL(2)]⊗n → C[SL(2)]⊗n be the dual map of Φ = (Φ1, · · · ,Φn).
At a crossing, Φ∗ acts as follows.
α ⊗ β α ⊗ β

γ ⊗ δ γ ⊗ δ

−→

α ⊗ β α ⊗ β

S S

γ ⊗ δ =
β(2) ⊗ αS(β(1))β(3)

γ ⊗ δ =
α(1)S(α(3))β ⊗ α(2)

α(1) ⊗ α(2) ⊗ α(3) means ∆(∆(α)) =
∑

j α
(1)
j ⊗ α

(2)
j ⊗ α

(3)
j (Sweedler notation).
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2. SL(2) representation space
Hopf algebra interpretation
Let Φ∗ : C[SL(2)]⊗n → C[SL(2)]⊗n be the dual map of Φ = (Φ1, · · · ,Φn).
At a crossing, Φ∗ acts as follows.

α ⊗ β α ⊗ β

γ ⊗ δ γ ⊗ δ

−→

α ⊗ β α ⊗ β

S S

γ ⊗ δ =
β2 ⊗ αS(β1)β3

γ ⊗ δ =
α1S(α3)β ⊗ α2

Theorem

Let Jb be the ideal generated by the image of Φ∗ − id⊗n, then Jb is equal
to the previous ideal Ib and C[SL(2)]⊗n/Jb is the SL(2) representation
space of π1(S

3 \K).

Remark

This construction can be generalized to any commutative Hopf algebra.
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3. Braided Hopf algebra

Braided Hopf algebra

Definition

An algebra A is called a braided Hopf algebra if it is equipped with
following linear maps satisfying the relations given in the next picture.

Operations

multiplication µ : A⊗A→ A,

comultiplication ∆ : A→ A⊗A,

unit 1 : C→ A,

counit ε : A→ C,
antipode S : A→ A,

braiding Ψ : A⊗A→ A⊗A.

µ ∆ Ψ Ψ−1

S S-1

S S−1 1 ε
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3. Braided Hopf algebra
Relations of a braided Hopf algebra

= = =
S
S-1

= =
S-1

S

= = = = = =

S = = S = = =

S
= SS

S

=

S S

= =

S
=

S
= =
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3. Braided Hopf algebra
Adjoint coaction
Dual of the adjoint action is given as follows.

Definition

The adjoint coaction ad : A→ A⊗A is defined by

ad(x) = (id⊗ µ)(Ψ⊗ id)(S ⊗∆)∆(x).

The adjoint coaction ad satisfies the following.

=

definition

= =

ad⊗ ad and ∆ two ad to µ ◦ ad
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3. Braided Hopf algebra

Braided commutativity
Braided commutativity is a weakened version of the commutativity.

Definition

A braided Hopf algebra A is braided commutative if it satisfies

(id⊗ µ)(Ψ⊗ id)(id⊗ ad)Ψ = (id⊗ µ)(ad⊗ id).

If A is braided commutative, the following commutativity holds.

=

definition

= =
S

=
S

ad⊗ ad and Ψ ad and µ ad and S
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3. Braided Hopf algebra
Braided SL(2)

Definition (S. Majid)

A braided SL(2) is a one-parameter deformation of C[SL(2)] defined by
the following. It is denoted by BSL(2).

b a = t a b, c a = t−1 a c, d a = a d, d b = b d+ (1− t−1) a b,

c d = d c+ (1− t−1) c a, b c = c b+ (1− t−1) a (d− a), a d− t c b = 1,

∆(a) = a⊗ a+ b⊗ c, ∆(b) = a⊗ b+ b⊗ d, ∆(c) = c⊗ a+ d⊗ c,

∆(d) = c⊗ b+ d⊗ d, S(a) = (1− t) a+ t d S(b) = −t b, S(c) = −t c,
S(d) = a, ε(a) = 1, ε(b) = 0, ε(c) = 0, ε(d) = 1,

Ψ(x⊗ 1) = 1⊗ x, Ψ(1⊗ x) = x⊗ 1, Ψ(a⊗ a) = a⊗ a+ (1− t) b⊗ c, Ψ(a⊗ b) = b⊗ a,

Ψ(a⊗ c) = c⊗ a+ (1− t)(d− a)⊗ c, Ψ(a⊗ d) = d⊗ a+ (1− t−1) b⊗ c,

Ψ(b⊗ a) = a⊗ b+ (1− t) b⊗ (d− a), Ψ(b⊗ b) = t b⊗ b, Ψ(c⊗ a) = a⊗ c,

Ψ(b⊗ c) = t−1 c⊗ b+ (1 + t)(1− t−1)2 b⊗ c− (1− t−1)(d− a)⊗ (d− a),

Ψ(b⊗ d) = d⊗ b+ (1− t−1) b⊗ (d− a), Ψ(c⊗ b) = t−1 b⊗ c, Ψ(c⊗ c) = t c⊗ c,

Ψ(c⊗ d) = d⊗ c, Ψ(d⊗ a) = a⊗ d+ (1− t−1) b⊗ c, Ψ(d⊗ b) = b⊗ d,

Ψ(d⊗ c) = c⊗ d+ (1− t−1)(d− a)⊗ c, Ψ(d⊗ d) = d⊗ d− t−1 (1− t−1) b⊗ c.
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3. Braided Hopf algebra

Braided SL(2) is braided commutative

Proposition

The braided Hopf algebra BSL(2) is braided commutative.

=

definition

= =
S

=
S

ad⊗ ad and Ψ ad and µ ad and S
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4. Quantized SL(2) representation space
Braid group representation through a braided Hopf algebra
Let A be a braided Hopf algebra which may NOT be braided

commutative.
We construct a representation of Bn on A⊗n associated with the

Wirtinger presentation. Let R and R−1 be elements of End(A⊗2) given by

R = R−1 = .

For σ±1
i ∈ Bn, let ρ(σi) = id⊗(i−1) ⊗R⊗ id⊗(n−i−1) and

ρ(σ−1
i ) = id⊗(i−1) ⊗R−1 ⊗ id⊗(n−i−1).

Theorem

The above ρ defined for generators of Bn extends to a representation of
Bn in End(A⊗n).

S. Woronowicz, Solutions of the braid equation related to a Hopf algebra. Lett.
Math. Phys. 23 (1991), 143–145. (for usual Hopf algebra)
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4. Quantized SL(2) representation space

Proof for the inverse

R

R−1

= = = = =

R−1

R

= = = = =
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4. Quantized SL(2) representation space

Proof for the braid relation

= =
**

=

(**) = = = = =
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4. Quantized SL(2) representation space

A representation space
From now on, we assume that the braided Hopf algebra A is braided

commutative. For b ∈ Bn, let ρ(b) ∈ End(A⊗n) be the representation of
b defined as above. Let Ib be the left ideal of A⊗n generated by the image
of the map ρ(b)− id⊗n.

Proposition

The left ideal Ib is a two-sided ideal.

This proposition comes from the following lemma.

Lemma

For x,y ∈ A⊗n, we have

ρ(b)µ(x⊗ y) = µ
(
(ρ(b)x)⊗ (ρ(b)y)

)
.
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4. Quantized SL(2) representation space
A representation space

Proof.

It is enough to show that

Rµ(x⊗ y) = µ (R⊗R)(x⊗ y)

for the product µ : A⊗2 ⊗A⊗2 → A⊗2 and x = x1 ⊗ x2,
y = y1 ⊗ y2 ∈ A⊗2, which is proved graphically as follows.

x1 ⊗ x2 y1 ⊗ y2 x1 ⊗ x2 y1 ⊗ y2 x1 ⊗ x2 y1 ⊗ y2 x1 ⊗ x2 y1 ⊗ y2

= = =
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4. Quantized SL(2) representation space

A representation space

Theorem

If the closures of two braids b1 ∈ Bn1 and b2 ∈ Bn2 are isotopic, then Ab1

and Ab2 are isomorphic algebras. Moreover, Ab1 and Ab2 are isomorphic
A-comodules with adjoint coaction. In other words, Ab is an invariant of
the knot (or link) b̂.

Definition

The quotient algebra Ab = A⊗n/Ib is callde the A representation space
of the closure b̂.
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4. Quantized SL(2) representation space
Markov equivalence

Theorem

The closures of two braids b1 ∈ Bn1 and b2 ∈ Bn2 are isotopic in S3 if and
only if there is a sequence of the following two types of moves connecting
b1 to b2. These moves are called the Markov moves and such b1 and b2 are
called Markov equivalent.

b

b′
←→

b′

b

, ←→ ←→

b′ b b b′ b σn b b σ−1
n

MI MII

We will see that Ab is invariant under MI and MII.
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4. Quantized SL(2) representation space
Equivalent pair

Definition

For b ∈ Bn, we present Iρ(b) by ρ(b) ∼ ρ(1). Similarly, for two diagrams
d1, d2 reresenting elements of Hom(A⊗m, A⊗n), d1 ∼ d2 present a
two-sided ideal Id1,d2 in A⊗n generated by

d1(x1 ⊗ · · · ⊗ xm)− d2(x1 ⊗ · · · ⊗ xm)

for x1, · · · , xm ∈ A. Such d1 and d2 are called the equivalent pair of
diagrams corresponding to the two-sided ideal Id1,d2 and the quotient
algebra A⊗n/Id1,d2 .

Lemma

Let d1 ∼ d2 be an equivalent pair and let d′1 ∼ d′2 be the equivalent pair
where d′1 and d′2 are obtained from d1 and d2 respectively by one of the
following operations (1), (2), (3), (3S), (4L), (4LS), (4R), (4RS)
illustrated in the following. Then the corresponding ideals Id1,d2 and Id′1,d′2
are equal.
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4. Quantized SL(2) representation space
Operation (1), (2), (3), (3S)

(1) Add S or S−1 to the same position of d1 and d2 at the top.
(2) Apply a braiding to the same position of d1 and d2 at the top.
(3) Add an arc connecting the adjacent strings.

(3S) Add an arc with S connecting the adjacent arcs.

(1)

1 i m
S

d1, d2

1 n

1 i m

S-1

d1, d2

1 n

(2)

1 i m

d1, d2

1 n

1 i m

d1, d2

1 n

(3)

1 i m

d1, d2

1 n

1 i m

d1, d2

1 n

(3S)

1 i m

S

d1, d2

1 n

1 i m

S

d1, d2

1 n

Jun Murakami (Waseda University) Quantized SL(2) representations July 22, 2019 22 / 26



4. Quantized SL(2) representation space

Operation (4L), (4R), (4R), (4RS)

(4L) Add an arc connecting the leftmost top arc and some bottom arc.

(4LS) Add an arc with S connecting the leftmost top arc and some bottom
arc.

(4R) Add an arc connecting the rightmost top arc and some bottom arc.

(4RS) Add an arc with S connecting the rightmost top arc and some
bottom arc.

1 m

d1, d2

1 i n

1 m

S d1, d2

1 i n

1 m

d1, d2

1 i n

1 m

Sd1, d2

1 i n
(4L) (4LS) (4R) (4RS)
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4. Quantized SL(2) representation space
Invariance under MI, MII
Invariance under MI is rather easy.
Invariance under MII is proved by using the above lemma.

Quantized SL(2) representation space
Let A be BSL(2), then Ab is a one-parameter deformation of the SL(2)

representation space, and we call it the quantized SL(2) representation
space of π1(S

3 \ b̂).

Generators of Ab

Since ρ(b)(x1 ⊗ x2) = ρ(b)(x1 ⊗ 1) ρ(b)(1⊗ x2) by the previous lemma,
ρ(b)(x1 ⊗ x2)− x1 ⊗ x2 = ρ(b)(x1 ⊗ 1) ρ(b)(1⊗ x2)− x1 ⊗ x2 =(
ρ(b)(x1 ⊗ 1)− x1 ⊗ 1

)
ρ(b)(1⊗x2)+ (x1⊗ 1)

(
ρ(b)(1⊗ x2)− 1⊗ x2

)
.

This implies that the ideal Ib is generated by

ρ(b)(1⊗(i−1) ⊗ xi ⊗ 1⊗(n−i))− 1⊗(i−1) ⊗ xi ⊗ 1⊗(n−i)

for xi ∈ A and i = 1, 2, · · · , n.
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5. Examples
Hopf link
A representation space

∼ =

s

s ∼ =

s

s ∼ =

s

s ∼

−→
4RS

s

s ∼ −→
3, 4RS

s ∼
s

−→
4L

∼

Another presentation

∼ −→
4LS s

s ∼
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Final remarks

We have to prove that the quantized SL(2) character variety is
generated by Trq.

For surface group, such quantization is constructed by using the skein
module by Bonahon-Wong and T. Le.

By considering the quantum trace of the element representing the
longitude, we may get some relation to the quantum version of the
A-polynomial, which is introduced for the AJ-conjecture, where this
polynomial gives the recurrence relation for the colored Jones
invariant. In the A-polynomial, the variables come from the
eigenvalues for the meridian and the longitude, and these two
variables do not commute. On the other hand, the quantum
characters for the meridian and the longitude commute each other.
So it may be interesting to establish the notion of “eigenvalue” for
BSL(2) and to find its relation to the quantum character.
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