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Abstract. This is a summary of a series of 6 lectures I gave in Villa de Leyva,
Colombia, in July 2011. The common thread for the series were “expansions” —
Taylor expansions, in some sense, yet expanded so much as to be barely recog-
nizable. So we started from quantum field theory, where the Taylor expansion
become the theory of Feynman diagrams, and continued to knot theory where
expansions make sense in the abstract, and relate to some Lie theory and “high”
algebra.

All lectures were videotaped and were accompanied by a series of handouts (see
VdL/)). Hence I will limit myself here to a quick summary and a list of links and
references.
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Lecture 1 — The Stonhenge story. The video of this lecture is at VdL/Videol.html,
and the handout, originally made for a lecture given in Oporto in July 2004, is on page
here.

The Gauss linking number of a two component link can be viewed as counting (with
signs) the possible placements of a “chopstick” on the link, so that one of its ends is on
one component and the other is on the other, and so that the chopstick is pointing at some
pre-specified point in “heavens”, which is just the S? that surrounds us in all directions.
Inspired by this, we've set to look for and count all such “cosmic coincidences”, in which
one places a graph made of chopstick atop a given embedded knot K, so that the chopsticks
have their ends either on the knot or at vertices in R® in which several chopsticks meet, and
so that each chopstick is pointing at a “star” — where a generic configuration of a large
number of stars, namely points in heavens or S?, is chosen in advance.

We determined that for the above count to be generically finite (namely for the number
of equations to be equal to the number of unknowns), the “cosmic coincidence” graph we
are studying should be trivalent, and so we formed the generating function Z’(K) of all
such cosmic coincidence counts — namely, Z’'(K) is a formal linear combination of trivalent
graphs, where each graph D appears with a coefficient equal (up to normalization factors)
to the (signed) number of times D can be placed atop K following the rules above.

We then studied in detail how Z’'(K) changes under deformations of K. We found that it
is not invariant, yet when it changes, the coefficients of some triples of graphs (denoted either
I, H,and X or S, T, and U, depending or the precise circumstances) jump simultaneously.
Thus if we let A denote the target space of Z’ (linear combinations of appropriate trivalent
graphs) divided by the relations I = H — X and S = T — U (called IHX and STU), then
within A, the generating function Z’ (or more precisely, a further-renormalized version Z)
is a knot invariant.

At the end we noted that Z actually arises from quantum field theory. One may study
the so-called Chern-Simons-Witten quantum field theory using “perturbation theory” (which
we discussed in the following lecture). The resulting “partition function” is a knot invariant
presented in terms of complicated “Feynman diagrams”, which in themselves are complicated
integrals. These integrals can be re-interpreted as “configuration space integrals”, which in
themselves can be re-interpreted as counting our “cosmic coincidences”.

Unfortunately, the story I presented in this lecture was never written up in quite the
same language. Part of the reason is that writing it precisely is harder than talking about
it and allowing some impreciseness to creep in. In my mind, the best written report on the
subject is Dylan Thurston’s old Harvard senior thesis [Th] (where “chopstick towers” are
called “tinkertoy diagrams”). The only other sources are my talk here and the video of my
March 2011 talk in Tennessee, at Talks/Tennessee-1103/.

Lecture 2 — Perturbation theory in finite dimensions and in the Chern-Simons
case. The video of this lecture is at VdL/Video2.html, and the handouts are on pages
and [§ here.

People like knots! Some evidence is on page [ here, and we started the lecture by display-
ing a number of bank logos that contain knots in them, and then by reviewing Lecture 1.
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We then moved on to learn about Feynman diagrams from the path integral perspective.
We started with the evaluation of perturbed Gaussian integrals on R", and computed these,
as power series in the perturbation parameter, using what is to be called Feynman diagrams.
The lovely thing is that the evaluation of Feynman diagram depends on the dimension n
only very mildly, and so it makes sense to formally substitute n = oo and compute infinite-
dimensional perturbed Gaussian integrals, also known as path integrals.

When all is done carefully, the result is that a path integral can be computed (more
precisely, expanded in terms of the perturbative parameter) in terms of Feynman diagrams,
where each Feynman diagram represents a certain finite dimensional integral whose integrand
has algebraic factors coming from the “perturbative part” and Green-function factors coming
from inverting the “quadratic part”.

In the case of gauge theory in general, and Chern-Simons-Witten theory in particular,
the quadratic part cannot be invertible due to the gauge symmetry. Yet there is a procedure
called “gauge fixing”, or the “Faddeev-Popov method”, to resolve this difficulty. It involves
integrating only over a section of the gauge orbits, and inserting a certain determinant to
fix a measure-theoretic error that arises. That determinant has its own perturbation theory,
and over all the resulting Feynman diagram prescription is much the same, only a bit more
complicated in the details. We ended with the complete Feynman rules for the evaluation of
the Chern-Simons-Witten path integral.

Much of the material in this lecture is completely standard, and can be found in any of
many textbooks on quantum field theory. The best sources that are specific to the Chern-
Simons-Witten theory are probably my thesis and paper [BNI, [BN2] and Polyak’s [Pal.

Lecture 3 — Finite type invariants, chord and Jacobi diagrams and “expansions”.
The video of this lecture is at VdL/Video3.html| and the handout is on page [J] here.

Lecture 3 was a pretty standard introduction to knots, knot invariants, and finite type
invariants, pretty much following [BN3].

In short, a “finite type invariant” is in a reasonable sense a polynomial on the space
of all knots — that is, it is a numerical invariant which is a polynomial as a function of
the knot; it is not an invariant of knots with values in polynomials, like the Conway or the
Jones polynomals. Yet we have shown that every coefficient of the Conway polynomial (and
likewise for Jones), in itself being a numerical invariant, is a finite type invariant.

A reasonable approach to the study of polynomials is by studying their top derivatives.
The “top derivative” of a finite type invariant turns out to be a linear functional on the
space A of Lecture 1, and hence in Lecture 3 we have posed the problem that was solved in
Lecture 1 — the construction of a “universal finite type invariant”.

Lecture 4 — Low and high algebra and knotted trivalent graphs. The video of this
lecture is at VdL/Video4.html, and the handouts are on pages [10] and [T1] here.

This is where the true depth of our topic begins to emerge. We first observe “low algebra”
— the diagrams that make up A turn out to represent formulas that can be written in any
appropriate Lie algebra, and hence A is in some sense a universal space that describes the
universal enveloping algebras of all Lie algebras. Further, when IC, knots, is replaced with
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K(1,), tangles, the corresponding associated graded space A gets replaced by A(7,), which
describes also tensor powers of universal enveloping algebras. Finally, the construction of a
homomorphic universal finite type invariant, or a “homomorphic expansion” Z: K(T,) —
A(T,), becomes a matter of solving certain systems of equations universally, for all Lie
algebras, a task that we name “high algebra”.

We then tasted one realization of the above plan, where tangles get replaced by knotted
trivalent graphs. The resulting “high algebra” that thus arises is the Drinfel’d theory of
asociators. The more complete discussion of knotted trivalent graphs and associators was
postponed to the following lecture.

“Low algebra” is described already at [BN3]. The story of “high algebra” in general is told
at my first wClips talk at VdL/wClips1.html and is written in [BD2], while the relationship
between knotted trivalent graphs and Drinfel’d associators is best described at [BDI].

Lecture 5 — Drinfel’d associators and knotted trivalent graphs. The video of this
lecture is at VdL/Video5.html, and the handouts are on pages [12| and |[11] (again) here.

Largely this was a review lecture, and a completion of the discussion of knotted trivalent
graphs, their generators and relations, and of Drinfel’d associators. The written reference
remains [BDI].

Lecture 6 — w-Knotted objects, co-commutative Lie bi-algebras, and convolu-
sions. The video of this lecture is at VdL/Video6.html, and the handouts, originally made
for a talk given in Bonn in August 2009, are on pages [13] and [14] here.

We started with a very brief discussion of the “bigger bigger picture”. It is hardly in writ-
ing anywhere, yet see my 2010 series of talks in Montpellier at Talks/Montpellier-1006/,
my talk in SwissKnots 2011 at [Talks/SwissKnots-1105/, and my talk at VdL/wClips1.html
(all are on video with links at said pages).

We then moved on to the lovely story of w-knotted objects. w-Knots are so called “ribbon
2-knots in R*”; locally they can be viewed as movies of flying rings in R3, and such flying
rings may trade places either externally, as ordinary braids, or internally, by flying through
each other. Thus the theories of w-braids, and likewise w-knots and other knotted objects,
are richer than their corresponding “usual” counterparts (though often this richness is not
seen by finite type invariants — see Talks/Chicago-1009/).

In parrallel with the usual “u” story, the “w” story also has finite type invariants, combi-
natorics (with “arrow diagrams” replacing “chord diagrams”), low algebra (related to finite
dimensional Lie algebras and their duals, or equivalently, to co-commutative Lie bialgebras),
and high algebra. The high algebra for the w-story arises when one attempts to construct
a homomorphic expansion for w-knotted graphs, and the equations that arise are equivalent
to the Kashiwara-Vergne [KV] equations that imply a relationship between convolutions on
any Lie group and convolutions on the corresponding Lie algebra.

It is worth noting that there is a map from the u-world to the w-world, and this
map “explains” the relationship between the Kashiwara-Vergne equations and Drinfel’d
associators discovered by Alekseev-Torossian [AT] and elucidated by Alekseev-Enriquez-
Torossian [AET].
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We expect there to be an even higher “v-story”, whose low algebra is about general
Lie bialgebras and whose high algebra is the Etingof-Kazhdan theory of quantization of Lie
bialgebras, but this story is yet to unravel.

The best source for the w-story is the still-evolving document and series of video clips [BD2].
Some parts that the said source have not reached yet are in my Montpellier talks (link above)
and in my Bonn talk Talks/Bonn-0908/. The v-story is hardly written, and the most there
is about it is in my SwissKnots talk linked above.
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A Borromean link seen at Villa de Leyva, July 2011.



Stonehenge

It is well known that when the Sun rises on midsummer’s morning
over the "Heel Stone" at Stonehenge, its first rays shine right
through the open arms of the horseshoe arrangement. Thus
astrological lineups, one of the pillars of modern thought, are
much older than the famed Gaussian linking number of two knots.
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Recall that the latter is itself an astrological construct: one of

the standard ways to compute the Gaussian linking number is to
place the two knots in space and then count (with signs) the
number of shade points cast on one of the knots by the other knot,
with the only lighting coming from some fixed distant star.
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This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto—0407
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Lecture 2 Handout

More on Chern-Simons Theory and Feynman Diagrams
Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107
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Lecture 3 Handout

The Basics of Finite-Type Invariants of Knots

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107
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Lecture 4 Handout

Low and High Algebra in the

u" Case

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107
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More precisely. let g = (X,) be a Lie algebra with an W m/@ \//.()7L g//9 Gé royl. O/S Iﬁ
orthonormal basis. and let R = (v,) be a representation. )
Set 5 gl Fotpi= S (9< ks F/q/’?b/j p/tswz@l ) /E/‘/)///@ 2
and then 2 /.S I‘l/:ji‘\ /4/3(’,‘/“\,*
Y, B
Wan - g T i i - - ' Ke*((o—o)j
E o it jwf 553
¢ i

Excrsice. Find « Pt mitlod fo Lind
Wy o (D) whin Q}?f)//; , R=)R"
Ts it velch) fo the Cowny polynomill

/

"Q ’10

and

Univesd Regresintstion The /9.
Taspirvs 49 fllx,90) = P)P(G) =Pl P1),
set U(9) = Cwords ia 0 2/ Frey) 3¢y
* 5/ch ~p of Y whends 710 (/{_/@),
# J0: U0~ Wlg)™™ by Nwes
L/J'JHI'@ "ooas mat be for Rk,
Exvese. \itl, 9 =<x.y/ (<] =x,
deferming (/([{ﬂ) G Kjumf/}%f//f'l.

ML

Aajl_é/f\/( kf\ﬁz ’T})Lof:j
A/@O) ——/—)A(Oo) > O

+<(O“0) A(oo)\
\k((?:(,) ) —2Z— 5u0)

28] ¢ {ux: H==pe)jcAloo)

“il =0, Polbws from O \)l/

So

Low dlyebrn. A(ff)— ulg)®*v

- 5 ’ — Z [‘ALC(XK?;J )
Vikwie, &(1,) — W(9)" 2
74{(7\0) 5 l\(/(/)/\/f/,f;d( Um/'va/fz:/ 44 ﬂ“ff

An Associator: ((AB)C)D —= (AB)(CD)
Q\A&n"’ﬁm /4(7‘5”\-3 “roof okyt” %,1 [ALI:TA)\
| deld(g)®? , : (11a):
(AB)C ———— A(BC) (A(BC))D A(B(CD))
satistying the “pentagon”. 1|,-_\|}q,\\\ /q;
A((BC)D)
D1 (1A1)D- 1D = (A11)D-(11A)D ve
Driardd

3

The hexagon? Never heard of it. g

gl

See Also. BV %kDencso, arXyv: 1103.189%
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Knotted Trivalent Graphs, Tetrahedra and Associators
HUJI Topology and Geometry Seminar, November 16, 2000
Dror Bar—Natan

Goal: Z:{knots}—>{chord diagrams}/4T so that S i
t = g : Modulo the relation(s): < = i >
/\
~——

(+more)

z Claim. With @ := Z(4), the above relation becomes equivalent
to the Drinfel'd’s pentagon of the theory of quasi Hopf algebras.

The Miller Institute knot

Pr oof.

Extend to Knotted Trivalent Graphs (KTG’s):
% é NV T

Need a new A A
relation: =0
Easy, powerful moves:
L= 0XK T
forget /Tup\ ‘ l ‘
@ miles @ Tl T2 3 4
—
away 3.
SRS V.V
connect i ——

Using moves, KTG is generated by ribbon twists A v
and the tetrahedrorA : . .. 2 N

|
A plant connect T ﬂ‘\ 1 1
. T Casien@)-Ge1eA)N®) e At
|sotop 4) |50top|es
Further directions:
1. Relations with perturbative Chern—Simons theory.
2. Relations with the theory of 6j symbols

P = (221 -(10AR”1)(®)- (10 @) € A(T4)

_ ) 3. Relations with the Turaev-Viro invariants.
forget A que. blueprint 4 can this be used to prove the Witten asymptotics conjecture?
d: computed 5. Does this extend/improve Drinfel'd’s theory of associators?

This handout is at http://www.ma.huji.ac.il/~drorbn/Talks/HUJI-001116

unZ|ps

More at Talks/HUJI-001116/
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Lecture 5 Extras Review Materia

| (mostly)

Dror Bar-Natan at Villa de Leyva, July 2011, http://www.math.toronto.edu/~drorbn/Talks/Colombia-1107

* count
with
signs

The signed Stonehenge
(D, K)q := (paumg of D and K

):

T he é,/;c) pictact, ‘W Cact,

........................................... (T\Opcﬂo‘zj CO"IL/’Z‘W/"//QS
Thus we consider the generating function of all stellar coincidences: A{ ol"
. 4 [V~
framing- LX/‘W!“_‘:S choose
1 !
2(K)i= Jim 3 (D, K)aD- | dependent | e A(©) | anL clwp‘ g IHX N (/(/ @)
Novoo, o 02 (G ) counter-term etc. 'J’ o rarm s
¢

Theorem. Modulo Relations, Z(K) is a knot invariant! h /'JL) ﬂ\/[(? (e N ﬂow OU():? ebre_
When deforming, catastrophes occur when:

A plane moves over an
intersection point —
Solution: Impose IHX,

An intersection line cuts
through the knot —
Solution: Imposc STU,

The Gauss curve slides
over a star —

Low O\fjcbf’\. 74<(7\/\)——7 (/((@)@-LV/K

Solution: Multiply by > X,\XJ Yo
T et oy e | TN o Z ke [T
L ~H(3)€"”e m””‘1/ o o e 7
(see below) (similar argument) is 7 P 2\ &N
l m ~ . —_—
It all is perturbative Chern—Simons—Witten theory: o ‘é‘? Zf,,";‘;’?:l ?? %( ﬂ‘k \'\//j(‘/ A( 7\,) ) 7 M( g ) —')
a i
ik 2 — Producls OF) IS\ | ﬂ "
oo & [o(ananr Janand)| —Zem@B) | A1) 0 wabessd wnined rp fhoy']
e —
> ¥ wg(D)is D) - Diftﬂ Y n=) “5 \/\/lld:( 4 z
D:dFiynagan Ddl‘;gymﬂ;“ LA - o4 ; s Richard Fe \m

Debinition, /4/1

VZ fmtwa.‘;f:‘u

Gan bt LX'I'GMJMJ to
N\ KA@?LS w/ Jouble ,a«/#r

\

) l

U_S’”o \/(;() \/(/‘ V4 ’\/") (Think ‘J/Fﬁrz%/af/an”)

DCFM/‘?'/oﬂ. \/ 1S of 7”jﬂ¢ m if M/’”jj
\/(W) (% (ﬂ/né /oénowrj)

‘ﬂ)({?‘“/( Frarte 7’:7/(, /m/a/uw/_g Syarat knot,

Theoretr. IF C[k) Z [k)gm e ]/

f¢ of %j/;f m.

Proof. c(57)=C()-c(X)=2c()])

,@ v@%

”@:

“Homomorphrc Ex/m}'o‘? Z K2k
IS an Wpansion Mot ivtrfiines
alf m/e\//\r)YL ﬂ//ﬁoé/f‘/& ops. LF
=ors F/m%/j p/tsw%ol ) Finding Z
s High Alyebra.

Wy)

JaY

M(g/ﬁ%

=

/’/0/705/?/"04 The Endaryertal] Then
ho/ls (CE thm weidts an LXPan iy

ZK\%A@ cf. IE K
M =59uler e
2)= Dt highs degrets

2011-07

An Associator: ((AB)C)D —= (AB)(CD)
Q\AwnL(/IM /4(7&5/4\,1( “roof olyu®” (A1D®
. Delf(g)®s 1 (11A)
(AB)C ——— A(BC) (A(BOND ABeD))
satisfying the “pentagon”, (1-_\1)‘N 1%

A((BC)D)
Ol (1A1L)DP- 1P = (A11L)DP-(11A)D Ve,
Deiagd ¥
The hexagon? Never heard of it.

See Also. BN kDencso, arXyv: 1103. 189

~

Page 1

12



Convolutions on Lie Groups and Lie Algebras and Ribbon 2—KnBtglaimer: ["God created the knots, all else ﬁ
Rough edges topology is the work of mortals. S =g |
Dror Bar—Natan, Bonn August 2009, http://www.math.toronto.edu/~drorbn/Talks/Bonn—0908-cmain! Leopold Kronecker (modified

T3, v, and W Kiiom) X (10polozy, Tow wlgebra, aml Righ algebra)
Dror

T —r—— o TR The Bigger Picture...
S '“;;-? T T
ot ,x(’% e ecrommmones || Convolutions The Orbit
%{ /i)y - (A S J), [See " NEA| statement 7 Method
C= A
M Y\“f:.‘(.n'::fi..,._ = i
B /‘“'” i @ @Q s Group-Algebra Subject
" ., statement flow chart
- A o H
i o 65 okl e i
E JH- Unitary
g o -
1 . /ﬁ ﬁ_ RSN, statement .
oot . erparon z {arknots) — a T H r ‘{_4‘ = H Free Lie
S Thf:r)m A ¥ statement
>y Algebraic
statement ‘
Alekseev
V .
-l Diagr -ammatic.—L0rossian
a statement statement
‘.i wlan
T j
i i oy » |[Knot-Theoretic True
oyl 1 statement Alekseev, Toros-
% - & ! > sian, Meinrenken
www.math.toronto. edu/~drorbn/TaIksIKSU 090407

hat are w-Trivalent Tangles? (PA :=Planar Algebra)

knots }:PA<\ mi23: 0-), 0= /X\: X’>
0 legs

&links
}:PA 7, A |R23, R4 - @-/K-Q(Q
P =)

{
{

wlT=

trivalent
tangles

Kashiwara Alekseev

K ‘, Torossian

Vergne
a4

trivalent _pA W- ‘ ’ unary w-
w-tangles [ generators |relations | operations
The w—generatons\. = O )@ Brokensurface =OO =
Q \NE @& ons/mbol: & B

= - y = () -
\{ - @ - >z/<< = N} =
% >X< = » : e N-

Dim. reduc.
Crossing 22 § virtual crossing Movier © O E

T Cap Wen )\ ’ Vertices
2 A
sSmoot|

omomorphic expansions for a filtered algebraic structure K:

OpSC’C = Ko > Ky o Ky > K3 D ...
I Lz
ops—grkC := /Co/IC1 D ]C1/IC2 ©® ]Cz//Cg D /Cg//C4 D ...

IAn expansion is a filtration respecting Z : K — grC that
“covers” the identity on gr/C. A homomorphic expansion is
lan expansion that respects all relevant “extra” operations.

A Ribbon 2- Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D; in the interior of B and

/-& %% %%

iltered algebraic structures are cheap and plenty. In any
IC, allow formal linear combinations, let i be the ideal
generated by differences (the “augmentation ideal”), and let
ICm, := ((K1)™) (using all available “products”).

he w-relations 1nclude R234, VR1234, M, Overcrossings
Commute (OC) but not UC, VVQ =1, and funny interactions
between the wen and the cap and over- and under-crossings:

"An Algebraic Structure"
0= (2
e~ .
@ N

e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.

objects of
kind 3

s [ = jA\— yet ”%

C: N e
/N7
o Challenge.
_eT ,T, as_ﬂ_e %%Dothe
: Reldemelster|
<|W 1 —tw
T — <|>W but ~_ _/
! Reldemelster Wmter
[%2)
>5 <
Q=
ca — = — =
24 [ | % @ ﬂ ﬂ
L
£9 AN N
= Unzip along an annulus Unzip along a disk

xample: Pure Braids. PB,, is generated by z;;, “strand ¢
goes around strand j once”, modulo “Reidemeister moves”.
A, := gr PB,, is generated by ¢;; := z;; — 1, modulo the 47T
relations [ti;, it +t;x] = 0 (and some lesser ones too). Much
happens in A,, including the Drinfel’d theory of associators.

The set of all
b/w 2D projec-

PNE T

K/KL— K/K2— K/K3 — K/K4 —

Just for fun.

Our case(s).
Z: high algebra

given a “Lie”
algebra g

A=
griC

“Z/l (9)77
solving finitely many
equations in finitely
many unknowns

IC is knot theory or topology; gr/C is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

low algebra: pic-
tures represent
formulas

l?uﬂﬂﬂ

K/K1 @K1/K2®Ko/K3B Ka/Kab Ka/KsP Ks/Ke®

An expansion Z is a choice of a
“progressive scan” algorithm.

[1] http://glink.queensu.ca/~4lb11/interesting.html 29/5/10, 8:42am|

IAlso see http://www.math.toronto.edu/~drorbn/papers/WKO/

R ker(K/Ks—K/Ks)

Video and more at [Talks/Bonn-0908/
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Convolutions on Lie Groups and Lie Algebras and Ribbon 2—-Knots, Page 2

not-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:

K
X

(1)

From wTT to A*. gr,, wI'T := {m—cubes}/{(m+1)

forget
topology
Polyak

w-Jacobi diagrams and A. A”(Y 1) =2 A¥(117) i

cubes}

Vassiliev

Goussarov

—

Diagrammatic statement. Let R = expH € A% (71). There

exist w € AY(T) and V € A¥(17) so that

w

O=

deg=13#{vertices}=6

WA
oAt At

Diagrammatic to Algebraic. With (z;) and (¢7) dual bases of
g and g* and with [aci7acj] > bF;xy, we have A — U via

{(Ig)/U( g) = S(g*) the obvious projection, with S the an-
tipode of U (Ig), with W the automorphism of (Ig) induced
by flipping the sign of g*, with r € g* ® g the identity element
and with R = e” € U(Ig) ® U(g) there exist w € S(g*) and
V e U(Ig)®? so that

(1) V(A®1)(R) = R®R?V in U(Ig)®% @ U(g)

(2) V- -SWV =1 (3) (e® ‘)(VA(w)):u)%w

k \ . ﬁ

T T /><\ Penrose Cvitanovic

w w T

d1m g
- Z bi o' wnrm ' € U(Ig)
i’j»k7l7m’n:1
Unitary <= Algebraic. The key is to interpret & (Ig) as tan-
Algebraic statement. With Ig := g* x g, with ¢ : U(lg) — gential differential operators on Fun(g):

® © € g* becomes a multiplication operator.

e r € g becomes a tangential derivation, in the direction of
the action of ad z: (z¢)(y) = ¢([z,y]).

o c:U(Ig) — U(Ig)/U(g) = S(g*) is “the constant term”.

Unitary = Group-Algebra. // wf+yer+y¢(x)1/)(y)
- <W:I:+ya W:1;+yew+y¢(x)w(y)>:<Vw:1:+y7 V€$+y¢(m)w(y)wilf+3/>

Unitary statement. There exists w € Fun(g)” and an (infinite
order) tangential differential operator V defined on Fun(g, x
g,) so that

(1) Verty = ¢2evV (allowing U(g)-valued functions)
(2) Vv (3) Vwyiy = wawy

=(wawy, €YV I (2)P(Y)wa 1 y) = (wWawy, e e?d(x) Y (y)wrwy)
[eers@iw.

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, 7 : G — A is multiplicative then

Group-Algebra statement. There exists w? € Fun(g)® so that

for every ¢, w € Fun(g)® (with small support), the following

holds in L{ (shhh, w? = j1/2)
2 z+y o y
//¢ Wopy® //¢ Jwyete
gxg axg (shhh this is Duflo)

Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions
of invariant functions on its Lie algebra. More accurately,
let G be a finite dimensional Lie group and let g be its Lie
algebra, let 7 : g — R be the Jacobian of the exponential
map exp : g — G, and let ® : Fun(G) — Fun(g) be given
by ®(f)(z) := ]1/2( ) f(expx). Then if f,g € Fun(G) are
IAd-invariant and supported near the identity, then

Q(f)x2(g) = ©(f x9).

(Fun(G),*) 2 (A,-) via L: f — > f(a)r(a). For Lie (G, g),
(9. +) D2 25 o7 ¢ S(g) Fun(g) ——> S(g)
e f e e
(G,) 3 e ——>e* € U(g) Fun(G) ——U(qg)
with Loty = [4(z)edr € S(g) and Li® " = [1(z)e

Z)(g) Given ¢; € Fun(g) compare o1

d—1 ( 1*’(#2 II’IZ/{( )

% in G : //wl Vb (y)e™e? *in g: /¢1 Yo (y)e™ Y

(1) » @1 (1) and

(shhh, Lg/; are “Laplace transforms”)

We skipped... e The Alexander e v-Knots, quantum groups and
polynomial and Milnor numbers. Etingof-Kazhdan.

e u-Knots, Alekseev-Torossian, ® BF theory and the successful
and Drinfel’d associators. religion of path integrals.

® The simplest problem hyperbolic geometry solves.

Video and more at [Talks/Bonn-0908/

14


http://www.math.toronto.edu/~drorbn/Talks/Bonn-0908/

