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Introduction

I Idea: an En-operad is an object En, defined by a reference model, the
operad of little n-discs (or n-cubes) Dn, used to encode the nth layer
of a hierarchy of homotopy commutative structures, from fully
homotopy associative but non-commutative (n = 1), up to fully
homotopy associative and commutative (n =∞).

I Problems:
I give an intrinsic characterization of the class of En-operads (today’s

talk);
I understand the spaces of homotopy automorphisms AuthOp(En), which

represent internal symmetries of these homotopy commutative
structures (Thomas’s talk).
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I The operads of little n-discs (and the class of En-operads) have been
introduced in topology in order to model structures attached to n-fold
loop spaces (Boardman-Vogt, May).

I New motivating applications of En-operads have arisen in
mathematical physics:

I second generation proofs of Kontsevich’s formality theorem (giving the
existence of deformation-quantizations) relies on an interpretation of
the Drinfeld associator in terms of a formality quasi-isomorphism for
chain E2-operads;

I the new arguments imply the existence of an action of the
Grothendieck-Teichmüller group on moduli spaces of
deformation-quantizations.

I New applications of En-operads also occur in the study of the spaces
of compactly-supported embeddings (modulo immersions):

I we have

Embc(Rm,Rn) ∼ MaphAbBiMod(Em)(Em,En) ∼ Ωm+1 MaphOp(Em,En)

when n ≥ m + 3 (by theorems of Arone-Turchin and Dwyer-Hess).
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I Theorem (rational homotopy theory interpretation of Drinfeld’s
associators): Any Drinfeld rational associator can be used to
construct a formality map:

D2 R2
∼oo

∃
∼Q
// 〈H∗(D2,Q)〉

where:
I R2 denotes a (cofibrant) resolution of the little 2-discs operad D2,
I 〈H∗(D2,Q)〉 is an operad in spaces deduced from the rational

cohomology of the little 2-discs operad,
I ∼Q denotes a rational homotopy equivalence of operads.

I Theorem (rational homotopy theory interpretation of Kontsevich’s
formality theorem): We have an analogous formality map

Dn Rn
∼oo

∃
∼R
// 〈H∗(Dn,R)〉 ,

defined over R, for every dimension n ≥ 2.
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I Intrinsic Formality Theorem (BF, Willwacher): Let P be an operad in
topological space, with P(0) = P(1) = pt. If we have:

I a rational cohomology isomorphism H∗(P,Q) ' H∗(Dn,Q), for some
n ≥ 3,

I an involutive isomorphism J : P
'−→ P which mirrors the action of a

hyperplane reflection on Dn in the case 4 | n,

then we can produce a map:

P R
∼oo

∃
∼Q
// 〈H∗(Dn,Q)〉 ,

where:
I R denotes a cofibrant resolution of P,
I and ∼Q denotes a rational homotopy equivalence of operads (as in the

n = 2 case).

I Corollary: We have a rational counterpart of Kontsevich’s formality
map.
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Plan

I Part I:
I §0. The notion of an operad
I §1. The little n-discs operads
I §2. The (co)homology of the little discs operads
I §3. The rational homotopy theory of operads
I §4. The statement of the intrinsic formality theorem

I Part II:
I §1. The Drinfeld-Kohno Lie algebra operad
I §2. The realization of the (n − 1)-Poisson cooperad
I §3. The obstruction theory proof of the intrinsic formality theorem
I Appendix: The fundamental groupoid of the little 2-discs operad
I Appendix: The rational homotopy theory interpretation of Drinfeld’s

associators
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§0. The notion of an operad

Intuitively, the notion of an operad formalizes the abstract structure
defined by collections of operations P(r) = {p(x1, . . . , xr )}.
Definition: An operad P in a symmetric monoidal category M (e.g. spaces,
modules, . . . ) is a collection of objects P(r) ∈M, r ∈ N, equipped with:

I an action of the symmetric group Σr on P(r), for each r ∈ N;

I composition operations

◦i : P(k)⊗ P(l)→ P(k + l − 1),

defined for each k , l ∈ N, i = 1, . . . , k, and which satisfy natural
equivariance, unit and associativity relations.
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Example: Let M ∈M. The collection of hom-objects
EndM(r) = Hom(M⊗r ,M) forms an operad associated to M, the
endomorphism operad of M. In the point-set (module) context:

I The action of a permutation σ ∈ Σr on an element f ∈ EndM(r) is
defined by:

(σf )(x1, . . . , xr ) = f (xσ(1), . . . , xσ(r)).

I The operadic composite of elements f ∈ EndM(m) and g ∈ EndM(n)
is defined by:

(f ◦i g)(x1, . . . , xm+n−1)

= f (x1, . . . , g(xi , . . . , xi+n−1), . . . , xm+n−1).

The structure of an operad is modeled on this fundamental example.
Many usual algebra categories can be defined in terms of operad actions.
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§1. The little discs operads
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∈ D2(4) ∈ F(D̊2, 4)

I The little n-discs spaces Dn(r) consist of collections of r little n-discs
with disjoint interiors inside a fixed unit n-disc Dn (see Figure).

I The configuration spaces F(D̊n, r) consist of collections of r distinct
points in the open disc D̊n (see Figure).

I There is an obvious homotopy equivalence Dn(r)
∼−→ F(D̊n, r).
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I The symmetric group Σr acts on Dn(r) by permutation of the little
disc indices (and on the configuration space similarly).

I The little n-discs spaces (unlike the configuration spaces) inherit
operadic composition operations

◦i : Dn(k)× Dn(l)→ Dn(k + l − 1)

given by the following substitution process

◦2 =
12

3
1

12

2

3

4

.

This gives the structure of the little n-discs operad Dn. The elements
of this operad c ∈ Dn(r) define operations acting on n-loop spaces
ΩnX = Map∗(Sn,X ).
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§2. The (co)homology of the little discs operads

I Observations: The homology modules of any operad in Top

H∗(P(r)) = H∗(P(r),Q), r ∈ N,

form an operad in gr Mod with the (action of the symmetric groups
and the) composition operations

H∗(P(k))⊗ H∗(P(l))→ H∗(P(k)× P(l))
◦i−→ H∗(P(k + l − 1))

yielded by the structure operations of our operad P.
I If we have dim H∗(P(r)) <∞ for all r , then the cohomology algebras

H∗(P(r)) = H∗(P(r),Q), r ∈ N,

dually form a cooperad in graded commutative algebras (a graded
Hopf cooperad), with composition coproducts:

H∗(P(k + l − 1))
◦∗i−→ H∗(P(k)× P(l))

'←− H∗(P(k))⊗ H∗(P(l))

dual to the homological ◦i .
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I Theorem (F. Cohen): For any n ≥ 2, we have an identity:

H∗(Dn) = Poisn−1,

where Poisn−1 is the operad of (n− 1)-Poisson algebras, for a product
operation and a Poisson bracket operation given by:

x1x2 = [pt] ∈ H0(Dn(2)), [x1, x2] = [Sn−1] ∈ Hn−1(Dn(2)),

and that satisfy the graded symmetry relations:

x1x2 = x2x1, [x1, x2] = (−1)n[x2, x1],

together with the usual associativity, Jacobi, and Poisson relations

(x1x2)x3 = x1(x2x3),

[[x1, x2], x3] = [[x1, x3], x2] + [x1, [x2, x3]],

[x1x2, x3] = [x1, x3]x3 + x1[x2, x3]

within the graded modules H∗(Dn(r)).
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I Theorem (Arnold): Let n ≥ 2. For each r ∈ N, the graded
commutative algebra H∗(Dn(r)) ' H∗(F(D̊n, r)) has a presentation of
the form:

H∗(F(D̊n, r)) =
S(ωij , 1 ≤ i 6= j ≤ r)

(ω2
ij , ωijωjk + ωjkωki + ωkiωij)

where a generator ωij of degree deg(ωij) = n − 1 and such that
ωij = (−1)nωji is assigned to each pair i 6= j .

I Observation: We have

〈ωij , π(x1, . . . , xr )︸ ︷︷ ︸
∈Poisn−1(r)

〉 =

{
1, if π(x1, . . . , xr ) = x1 . . . [xi , xj ] · · · x̂j · · · xr ,
0, otherwise.
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§3. The rational homotopy of operads

Quick recollections on Sullivan’s models:

I The model is given by Sullivan’s functor of PL differential forms
Ω∗ : sSetop → dg Com. For a simplex ∆n = {0 ≤ x1 ≤ · · · ≤ xn ≤ 1},
we have:

Ω∗(∆n) = Q[x1, . . . , xn, dx1, . . . , dxn].

I This functor has a left adjoint G• : dg Com→ sSetop such that
Gn(A) = Mordg Com(A, Ω∗(∆n)), for each n ∈ N. Let:

〈A〉 := derived functor of G(A) = Mordg Com(RA, Ω
∗(∆•)),

where RA
∼−→ A is any cofibrant resolution of A in dg Com.

I If X satisfies reasonable finiteness and nilpotence assumptions, then

X∧Q := 〈Ω∗(X )〉

defines a rationalization of the space X .
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I Idea: Take the category of cooperads in commutative dg-algebras
(the category of Hopf dg-cooperads) as a model for the category of
operads in simplicial sets (and in topological spaces).

I Problem: If P is an operad in sSet, then we only have a zig-zag of
maps:

Ω∗(P(k + l − 1))
◦∗i−→ Ω∗(P(k)× P(l))

∼←− Ω∗(P(k))⊗ Ω∗(P(l))

and no strictly defined cooperad coproducts on P.

I Proposition: The functor G•(A) = Mordg Com(A, Ω∗(∆•)) is symmetric
monoidal (in a strong sense).

I Corollary: The simplicial sets G•(K(r)) associated to a Hopf
dg-cooperad K do inherit composition products

G•(K(k))× G•(K(l))
'←− G•(K(k)⊗ K(l))

◦∗∗i−−→ G•(K(k + l − 1))

and form an operad in simplicial sets.
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I Hence, the functor G•(A) = Mordg Com(A, Ω∗(∆•)) induces a functor
on Hopf dg-cooperads G• : dg Hopf Opc → sSetOpop.

I Idea: Take a right adjoint of this functor:

G• : dg Hopf Opc � sSetOpop : ∃ Ω∗]
to get an operadic upgrade of the Sullivan functor.

I Theorem (BF):
I The functors G• : dg Hopf Opc � sSetOpop : Ω∗] form a Quillen pair.
I Let R be a cofibrant operad such that dim H∗(R(r)) <∞ for each r .

Then we have a quasi-isomorphism of dg-algebras

Ω∗] (R)(r)
∼−→ Ω∗(R(r))

in each arity r .
I The canonical map η : R→ R∧Q, where:

R∧Q = 〈Ω∗] (R)〉,

is equivalent to the Sullivan rationalization map of the space R(r) in
each arity r .
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§4. The statement of the intrinsic formality

I Reminder: H∗(Dn) = Poisn−1 ⇒ H∗(Dn) = Poiscn−1 (the dual
cooperad of Poisn−1 in graded modules).

I Topological Intrinsic Formality Theorem: Let R be a cofibrant operad
in simplicial sets, with R(0) = R(1) = pt. If we have:

I a rational cohomology isomorphism H∗(R,Q) ' Poiscn−1, for some
n ≥ 3,

I an involutive isomorphism J : R
'−→ R which mirrors the action of a

hyperplane reflection on Dn in the case 4 | n,

then we can produce a map:

R∧Q ∃
∼ // 〈Poiscn−1〉 .

I First purpose: Give an explicit description of 〈Poiscn−1〉.
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To be continued . . .
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