Handouts for the Montpellier Meeting

[ understand Drinfel’d and Alekseev-Torossian, I
don’t understand Etingof-Kazhdan yet, and I'm
clueless about Kontsevich

Dror Bar-Natan, June 2010

Abstract. The title, minus the last 5 words, completely describes what I want to share
with you while we are in Montpellier. I'll tell you that Drinfel’d associators are the solutions
of the homomorphic expansion problem for u-knots (really, knotted trivalent graphs), that
Kashiwara-Vergne-Alekseev-Torossian series are the same for w-knots, that the two are
related because u- and w- knots are related, and that there are strong indications that ”v-
knots” are likewise related to the Etingof-Kazhdan theory of quantization of Lie bialgebras,
though some gaps remain and significant ideas are probably still missing. Kontsevich’s
quantization of Poisson structures seems like it could be similar, but I am completely clueless
as for how to put it under the same roof.

I want as much as your air-time and attention as I can get! So I'll talk for as long as you
schedule me or until you stop me, following parts of the following 8 handouts in an order
that will be negotiated in real time.
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1 “projKu(1,) = U

((a, @ tder,) x tr,)”, Montpellier, June 2010

Dror Bar—Natan Mon

I understand Drinfel’d and Alekseev—-Torossian, | don’t unders
Etingof-Kazhdan yet, and I'm clueless about Kontse
tpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier:

1. proj K*(1,) =, U ((a, & Wer,) X tr,)

— All Signs Are Wrong! —

Cans and Can’t Yets.

(arbitrary algebraic) ( a problem in
structure graded algebra

e Feed knot-things, get Lie algebra things.

o (u-knots)— (Drinfel’d associators).

e (w-knots)— (K-V-A-E-T).

e Dream: (v-knots)— (Etingof-Kazhdan).

e Clueless: (777)—(Kontsevich)?
e Goals: add to the Knot Atlas, produce a work-

&5
ing AKT and touch ribbon 1-knots, rip benefits @
from truly understanding quantum groups.

projectivization N
machine T kit ils s
gohe €an Edi

www.katlas.org

<«

%7+ | "An Algebraic Structure"

=G
- Cod-a o

e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.

objects of
kind 3

= @ .
—

g/@g

omomorphic expansions for a filtered algebraic structure K:

ops—=K = Ky D K1 D Kp

3 1z
OpSGgI'IC = ICO/IC1 (&3] ICl/ICQ [S3) }CQ/K3 [S3) ’Cg/IC4 D ...

An expansion is a filtered Z : K — gr K that “covers” the

D Ks D ...

u-Knots

(PA :=Planar Algebra)
{ knots

s :PA<\/\ R123: (O-), 0-)( \—\>

——

0 legs

identity on gr K. A homomorphic expansion is an expansion
that respects all relevant “extra” operations.
Reality. gr K is often too hard. An A-expansion is a graded

Circuit Algebras

J Q
cP
K Q

A J-K Flip Flop

Infineon HYS64T64020HDL-3.7-A 512MB RAM

“guess” A with a surjection 7 : A — grC and a filtered 7 :
KC — A for which (gr Z)or = I 4. An A-expansion confirms A
and yields an ordinary expansion. Same for “homomorphic”.

b/w 2D projec-

g

tions of reality

The set of all
Just for fun.

v-Tangles and w-Tangles (CA :=Circuit Algebra)
v-knots

{&links} =CA<\ " |r23: >=><X‘X>
:PA<X,><’VR1233>Q—>,§=><’§<\=%;D:>/<\=\>/<>

R23
{w-Tangles} = v-Tangles /OC: //Q =

KKy K/Ks— K/Ks — K/Ky+—

l-’liiﬁ.

K/Ki®Ki1/Ka®Ko/KsP Ka/KaB Ka/KsPBKs/KeB -+

I Il
R ker(’C/K4—>’C/]C3)

An expansion Z is a choice of a
“progressive scan” algorithm.

crop
rotate
adjoin

IThe W—generator‘s\. = O )p Brokensurface HROO R
Q NE @D /-.>2|35ymbo|: o=
y | | p - @ |
\{ = @ = >>/2< = [\ =
% >>'<<: SN- N-

Dim. reduc.
Crossing & (02 £ Virtual crossingvovies & O &

iltered algebraic structures are cheap and plenty. In any
IC, allow formal linear combinations, let 'y = Z be the ideal
generated by differences (the “augmentation ideal”), and let
Ko = ((K1)™) (using all available “products”). In this case,
set proj K := gr IC.

xamples. 1. The projectivization of a group is a graded

IA Ribbon 2-Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
Whose preimages in B are a disk Dy in the interior of B and

>§< WK

I
I
:
|
1

associative algebra.
2. Pure braids — PB, is generated by z;;, “strand ¢ goes
around strand j once”, modulo “Reidemeister moves”. A,
gr PB,, is generated by t;; := x;; — 1, modulo the 47T relations
|[tij, tix + tjx] = 0 (and some lesser ones too). Much happens
in A,, including the Drinfel’d theory of associators.
3. Quandle: a set () with an op A s.t.

1Nz=1, zAl=nuz, (appetizers)

he w-relations incliide R234, VR123
Commute (OC) but not UC:

oc: %e Ke% yemo%

, D, Overcrossings

(xAY)ANz=(xA2)A(YyA2z). (main)

proj @ is a graded Leibniz algebra: Roughly, set 0 := (v — 1)
(these generate I!), feed 14+, 1 + 4, 1 + Z in (main), collect
the surviving terms of lowest degree:

-
~ "God created the knots, all else in
~ topology is the work of mortals.”
Leopold Kronecker (modified)
Also see http://www.math.toronto.edu/~drorbn/papers

NL’

(x/\y)/\z- (x/\z)/\y—i—m/\(y/\z)

T~ \ Kashiwara, Vergne,
" Alekseev, Enriquez,
¢ Torossian.

Ko/

2



1. proj K*(Tn) =5 U ((ap, ® tder,) X try,), continued.

'Wheels and Trees. With P for Primitives,

&i i ? “arrow diagrams” Vin/Vin-1)"

GousS;riav—Polyak—Viro ‘4 \\
- .

Fom ‘w EESTRvEvalE

exact?

0——(wheels) —t>PAY (Tn) (trees) —=0,
2 —
with 2 0,
L2 o~

trees atop a wheel
and a little prince

So proj K% (1,) = U ((trees) x (wheels)).

Imperfect Thumb-Rule. Take R3 (say), substitute X — X +
ﬁ, keep the lowest degree terms that don’t immediately die:

R3: H%LHH%: |+ [+ FH
o o [ =h<
@ e

R:

o

Some A-T Notions. a, is the vector space with basis
T1,...,%n, lie, = lie(a,) is the free Lie algebra, Ass, =
U (lie,,) is the free associative algera “of words”, tr : Ass! —
tr, = Ass /(i i, - - 1i,, = T4y - -1y, T, ) is the “trace” into
“cyclic words”, det,, = det(lie,,) are all the derivations, and
toer, = {D € e, : Vi Ja; s.b. D(m;) = [z, a4)}

are “tangential derivations”, so D <« (ai,...,ay) is a vec-
tor space isomorphism a, @ toer,, = €, lie,. Finally, div :
toer,, — tv, is (a1,...,a,) — >, tr(zx(Okar)), where for

R3.

Thm. Z = A, +

maybe —>. TC

(OC
-

a € Ass!, Opa € Ass, is determined by a = >k (Owa)z,
and j : TAut, = exp(tder,,) — tr, is j(e?) = <51 - div D.

Theorem. Everything matches. (trees) is a, 69 toer,, as Lie
algebras, (wheels) is tr,, as (trees) / tder,-modules, divD =
.~ (u —1)(D), and e*Pe=tP = £IP,

Differential Operators. Interpret (Ig) as tangential differen-
tial operators on Fun(g):
® © € g* becomes a multiplication operator.

The Bracket-Rise Theorem. AY (1) is isomorphic to

STU, A3,
and ITH
relations

(2 in 1 out vertices,
no isolated purple)

C OO
TSRO

e © € g becomes a tangential derivation, in the direction of
the action of ad z: (z¢)(y) := ¢([z,y]).

Trees become vector fields and uD +— ID is D — D*.
div D is D — D* and jD = log(e” (eP)*) = fol dtetP div D.

So

Special Derivations. Let sder,, = {D € tder,, : D (> ;) = 0}.
Theorem. sdet,, = ma(proju-tangles), where « is the obvious

i,7,k,l,m,n=1

ml\/ _ \ / B y Wz:\/ _ \ / B y map proju-tangles — proj w-tangles.
i ! Proof. After decoding, this becomes Lemma 6.1 of Drinfel’d’s
~~ \ / amazing Gal(Q/Q) paper.
5TU3 =TC: 0 = - mxs | = P X The Alexander Theorem. T;; = [low(#7) € span(#i)|,
X N # e . A
s; = sign(#1), d; = dir(#i),
IProof. . ) S = diag(szdz)a
LN - L Pov =N = NN - 0N | A=det (I+T(I - X9)).
Corollaries. (1) Related to Lie algebras! (2) Only wheels and 157 § é (i) El)) i § ((1)) §
isolated arrows persist. 7=| 91001010
To Lie Algebras. With (z;) and (¢’) dual bases of g and g* 9e1e0d0
and with [2;, z;] = bejxk, we have AY — U via -5 dlag(f g{oio)‘i ()){oi X, 1)
= X X A XA X
bk by
Conjecture. For u-knots, A is the Alexander polynomial.
/X\ . ﬁ Theorem. With w : ¥ + wy, = (the k-wheel),
Z = Nex w<—w<lo o1 A(e” )) mod wiw; = Wi,
Penrose Cvitanovic pA ngI ]] ( ) Z =N - A_l((:rm)
dlmg This is the ultimate Alexander invariant! computable in poly-
kpm i j I o nomial time, local, composes well, behaves under cabling.
Z bisbrie" @ onwm e’ € Ulg =g x g) Seems to significantly generalize the multi-variable Alexander

~

Theorem (PBW, “U(Ig)®™
LAY (1,,) = B,,, where

S(Ig)®"”). As vector spaces,

Kontsevich E

I%ﬁ
- X

\/\
AN

2ilo vertices, no circular edges
N3 3¢ 1¢ 1
( =~ )
,n, repeats allowed

B,

AN il

2
labels in 1, ...

polynomial and the theory of Milnor linking numbers. But

it’s ugly, and much work remains.

PG T ’d‘zi L & o & Ay
HN &% 1‘{&%‘9/‘#@“J@{
RS 15 Rl ARG

)

"
Qj :;n O

qﬂ
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“w-Knots, Alekseev-Torossian, and baby Etingof-Kazhdan”

2. w—Knots, Alekseev-Torossian, and
baby Etingof-Kazhdan

Dror Bar—Natan, Mon

| understand Drinfel’d and Alekseev—Torossian, | don’t unders
Etingof-Kazhdan yet, and I'm clueless about Kontse
tpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier:

rivalent w-Tangles.

not-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:

WwTT = CA < w- w- unary w-
generators relatlons operatlons
IThe w—generator\s\. = o(OOF m )\ )/&
Q NE @&
VY ECH
% >\/<<: @3 : d smgular vertex
Crossing 5 (O © -t E*E | —+—

—

1)

A X

_>

[The w-relations include R234, VR1234, D, Overcrossmgs

+ L) (

Commute (OC) but not UC, W2 = 1, and funny interactions
between the wen and the cap and over- and under- crossings

e\/aswxej/&

no'

yet not1 /&1

Challenge.

el >j

— T 4 _T_ as_ﬂ_e %sq:Dothe
? Reldemelsterl
| 1, _
— _I_ but | q? A
Reidemeister _Winter
2 I AL
[OR=%
< O
. I§ UnZ|p along an annulus unzip along:;sk

Diagrammatic statement. Let R = expH € AY(11). There

exist w € AY(T) and V € AY(17) so that

w-Jacobi diagrams and A. AY(Y 1) =2 AY(111) is

C R REEENEEE

(2) VV* = I in A¥(11)

B)V Alw) =w®uwin AY(1!

Y el
sl e\ YA

Alekseev-Torossian statement. There are elements F' € TAuto
and a € try such that

= loge®eY

Dan 7 RENTESNIES

F(x+vy)
Theorem. The Alekseev-Torossian statement is equivalent to
the knot-theoretic statement.
roof. Write V' = e®e“P with ¢ € try, D € tdety, and w = €®

and jF =a(z) + a(y) — a(loge®e?).

deg:%#{vertices}:ﬁ
IAn Associator: ((AB)C)D —= (AB)(CD)

(A11)®
el (g)®3 /m (HA)%
(AB)C ———— A(BC) (A(BC))D A(B(CD))

satisfying the “pentagon”,

(IAI)R %d)

A((BC)D)

D1-(1A1)®-1® = (A11)P-(11A)D

The hexagon? Never heard of it.

with b € tr;. Then (1) < e“P(x + y)e uP

(2) & I = ee"P(euP)*ec = e2°e/P | and
(3) > coeuDaHy) Z H@ITHY) o geehlloge™e?) _ obl@)+b(y)
= ¢ = b(xz) + by )—b(loge eY).

J— €T
= loge®eY,

'The Alekseev-Torossian Correspondence.
{Drinfel’d Associators} = {Solutions of KV}.
'We need an even bigger algebraic structure!

e, blue tubes and red
strings in R* (w)

01 cen knotted trlvalent
graphs in R? (u)

)

/. X
Ny 9




2. w—Knots, Alekseev—-Torossian, and baby Etingof-Kazhdan, contin

ued.

Using moves, KTG is generated by ribbon twists

and the tetrahedron A :
c@

here are gre

Smopy@

O

plant conne

agents them

unZIp @Sompe@ unzps@
—

forget
—

All strand$

Intr oduce “Punctures” |

P/
- swana() )

S )
3= A

Punctures expand to
the nearest Y-vertex:

N, N = N ==

IC”. Allow tubes and strands and tube-strand vertices

Modulo the relatlon(s) i >

ﬁ*ﬁ A

as above, yet allow only “compact” knots — nothing
runs to oo.

K% <+ KY equivalence. K% has a homomorphic ex
pansion iff ¥ has a homomorphic expansion.
—> Puncture A and Z:

Clalm Wlth ® := Z(A), the above relation becomes equiv-
alent to the Drinfel’d’s pentagon of the theory of quasi-Hopf
algebras.

3= i o

makes sense,

Proof.

{ and CA ops can
— be emulated

vy KW “Cut and cap is well-defined on u”

Light: @ é @ Better: @ i @

Theorem. The generators of K% can be written in
terms of the generators of K" (i.e., given ®, can writd
a formula for V.

Sketch.

M (1) ana /\\ -
so enough to write any . Here go:
N

“the sled” i

- :(@@1)-(1®A®1)(<I>)-(1®<I>)EA(T4)
W ‘ (T
N - NEEE
AN g
. 4’9 2

= 55 N

1 2 3 4

=(A®121)(?)- 11 A)(P) € A(Ty)
{&Jk\/} 42&}550 Clda/j’j Trruid = a_ tidrahdron
hag 4 Verticts.

-

{/

/9=

@\/_65"{"/

So /7L K AL Surr
of wnrooted

+ LS.
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“w-Knots and Convolutions”, Bonn, August 2009

Vergne Torossian

2

Convolutions on Lie Groups and Lie Algebras and Ribbon 2—Knbiglaimer: | "God created the knots, all else gi
i Rough edges topology is the work of mortals, v<
Dror Bar—Natan, Bonn August 2009, http://www.math.toronto.edu/~drorbn/Talks/Bonn—0908 emain! Leopold Kronecker (modifiedit
b Bt i 2 HThe Bigger Picture... hat are w-Trivalent Tangles? (PA :=Planar Algebra)
-knots are vl oot g weakly v, and warmap: knots N \ % A/ /
v s trant [ 10D (4 wetnetlr-knasioC) _ . _ _ v N
b {()/< gg’i‘ﬁ(“‘“"““”"m""’““”‘ Convolutions The Orbit { &links =PA N R123: p >7 >\ ><a / /2 ¢
E NVe < ) statement , =" Method 0 legs
g 0 |
T trivalent N
Group-Algebra Subject { 1 }ZPA /\, )\ R23, R4 : @ =/K=¢Q
statement flow chart tangles A
; é X
£ Unitary wTT=
i stat t . .
; s englen Free Lie trivalent w- unary w-
v statement =PA ’
Algebraic w-tangles generators relatlons operations
statement The w—generators. , & o () & Brokensurface EOO =
Alekseev N & = . = ®) =
v Dlagranvlmamc/TorOSSian Q \NE ©@)OH @ 2D gymolE O =
| -y <tatement statement \( = O = >>/ = 8 E
., | NP SIeR E > E
B A 5 ||[Knot-Theoretic True Dim. reduc.
oy , statement  dan Meinrenbon Crossing = Q © E Virtual crossing Movied © O E
"&W'&Zﬁﬁ?érémo edu/~dr0rbn/TaIks/KSU -090407 Cap  Wen )\ . vertices
. % |
Kashiwara Alekseev [1]
A SmMoot|

omomorphic expansions for a filtered algebraic structure K:

ops—K = Ko D K

I 1z
OpSGgI"C = ’Co/}Cl (&3] ICI/’CQ D ICQ/’C?, [S3) K3/1C4 D ...

IAn expansion is a filtration respecting Z : K — grC that

“covers” the identity on gr/C. A homomorphic expansion is

o K > K3 Do...

A Ribbon 2- Kot | is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D; in the interior of B and

lan expansion that respects all relevant “extra” operations.
iltered algebraic structures are cheap and plenty. In any
)C, allow formal linear combinations, let Ky be the ideal
cenerated by differences (the “augmentation ideal”), and let
ICrm := ((K1)™) (using all available “products”).

/-& %R

he w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC, W? = 1, and funny interactions
between the wen and the cap and over- and under-crossings:

"An Algebraic Structure™

GG,
- (o D=t oy

objects of
kind 3

L 8

e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.

IR T
Challenge.
Le— ,T, as_ﬂ_e %Af):Dothe
: ! Reidemeister!
J[W I W
_wﬂbiy.j
! Reidemeister _Winter
a_é <
DONIPN]
oo
e
. g Unzip along\; annulus Unzip alon\gsisk

xample: Pure Braids. PB, is generated by z;;, “strand ¢
goes around strand j once”, modulo “Reidemeister moves”.
A,, := gr PB,, is generated by t;; := x;; — 1, modulo the 4T
relations [t;;, tir + t;x] = 0 (and some lesser ones too). Much

happens in A,,, including the Drinfel’d theory of associators.

The set of all
b/w 2D projec-
tions of reality

Just for fun.

T

K:/K:1<— K:/K:z(— K:/K::;(— K:/K:4<—

Our case(s).
Z: high algebra
K

given a “Lie”
algebra g

A=
er IC

‘Lu(g)”
low algebra: pic-

tures represent

formulas

solving finitely many
equations in finitely
many unknowns

IC is knot theory or topology; gr/C is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

‘lkuiﬁﬂ

IC/IC1 @Kl/’(:z@’(:z/’(::s@ K:3/K:4@ K:4/K:5@ ’C5/’C6@

An expansion Z is a choice of a
“progressive scan” algorithm.

crop
rotate

[1] http://glink.queensu.ca/~4lb11/interesting.html 29/5/10, 8:42am|

adjoin Il I

IAlso see http://www.math.toronto.edu/~drorbn/papers/WKO/

R ker(K/Ks—K/K3)




Convolutions on Lie Groups and Lie Algebras and Ribbon 2—-Knots, Page 2

not-Theoretic statement. There exists a homomorphic ex-
pansion Z for trivalent w-tangles. In particular, Z should
respect R4 and intertwine annulus and disk unzips:

ALK
X

(1)

—

From wTT to A*. gr,, wI'T := {m—cubes}/{(m+1)

forget
topology
Polyak

w-Jacobi diagrams and A. A*(Y 1) = A% (T11) is

A HHE - T H

Cubes}

Vassiliev

Goussarov

—

Diagrammatic statement. Let R = expH € AY(11). There

exist w € A (T) and V € AY(17) so that

Y el
N AN,

O] 20 44 44

deg=13#{vertices}=6
Diagrammatic to Algebraic. With (z;) and (¢7) dual bases of
g and g* and with [aci7acj] > bF;x, we have A — U via

{(Ig)/U( g) = S(g*) the obvious projection, with S the an-
tipode of U (Ig), with W the automorphism of U (Ig) induced
by flipping the sign of g*, with r € g* ® g the identity element
and with R = e” € U(Ig) ® U(g) there exist w € S(g*) and
V e U(Ig)®? so that

(1) V(A®1)(R) = R®R?V in U(Ig)®% @ U(g)

(2) V- -SWV =1 (3) (e® ')(VA(w))*vu@vu

k bZlL
T T /><\ Penrose cVItanOVIC
d1m g
- Z bi o' wprme! € U(Ig)
i’j»k7l7m’n:1
Unitary <= Algebraic. The key is to interpret & (Ig) as tan-
Algebraic statement. With Ig := g* x g, with ¢ : U(lg) — gential differential operators on Fun(g):

® © € g* becomes a multiplication operator.

e r € g becomes a tangential derivation, in the direction of
the action of ad z: (z¢)(y) = ¢([z,y]).

o c:U(Ig) — U(Ig)/U(g) = S(g*) is “the constant term”.

Unitary = Group-Algebra. // w3+yer+y¢(x)1/)(y)
= <wj,;+y, w;,;+yew+y¢(x)1/)(y)>:<Vw:1;+y7 Ve$+y¢(x)w(y)wilf+3/>

Unitary statement. There exists w € Fun(g)” and an (infinite
order) tangential differential operator V defined on Fun(g, x
g,) so that

(1) Verty = ¢xevV (allowing U(g)-valued functions)
(2) Vv* (3) Vwyiy = wawy

= (wawy, €YV (2)P(y)wa 1 y) = (Waty, e e?d(z) Y (y)wswy)
[uzerers@uw.

Convolutions and Group Algebras (ignoring all Jacobians). If
G is finite, A is an algebra, 7 : G — A is multiplicative then

Group-Algebra statement. There exists w? € Fun(g)“ so that

for every ¢, w € Fun(g)® (with small support), the following

holds in L{ (shhh, w? = j1/2)
2 z+y _ y
//¢ Waty® //¢ Jwyete
gxg axg (shhh this is Duflo)

Convolutions statement (Kashiwara-Vergne). Convolutions of
invariant functions on a Lie group agree with convolutions {/
of invariant functions on its Lie algebra. More accurately,
let G be a finite dimensional Lie group and let g be its Lie
algebra, let 7 : ¢ — R be the Jacobian of the exponential
map exp : g — G, and let ® : Fun(G) — Fun(g) be given
by ®(f)(z) := ]1/2( :)f(expx). Then if f,g € Fun(G) are
IAd-invariant and supported near the identity, then

O(f)*®(g9) = 2(f *9)-

(Fun(G),x) =2 (A,-) via L: f — > f(a)7(a). For Lie (G, g),
(9. +) D2 ——25 o7 ¢ S(g) Fun(g) —°—> S()
e fe e )
(G,) 3 e® ——> e € U(g) Fun(G) ——U(qg)
with Loty = [4(z)edr € S(g) and Lid ' = [1(z)e

Given v; € Fun(g) compare ®~!

1(g). A
@7( 1*’(#2 mL{( )

w in G : //wl Vb (y)e™e? *in g: /¢1 2 (y)e” TV

(1) » @1 (¢2) and

(shhh, Lg/; are “Laplace transforms”)

We skipped... e The Alexander e v-Knots, quantum groups and
polynomial and Milnor numbers. Etingof-Kazhdan.

e u-Knots, Alekseev-Torossian, ® BF theory and the successful
and Drinfel’d associators. religion of path integrals.

® The simplest problem hyperbolic geometry solves.
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“w-Knots from Z to A”, Goettingen, April 2010

w—Knots from Z to A @ —
Dror Bar—Natan, Luminy, April 2010
http://www.math.toronto.edu/~drorbn/Talks/Luminy—1004/

IAbstract T will define w-knots, a class of knots wider than
ordinary knots but weaker than virtual knots, and show that
it is quite easy to construct a universal finite invariant Z of
w-knots. In order to study Z we will introduce the “Euler
Operator” and the “Infinitesimal Alexander Module”, at the
end finding a simple determinant formula for Z. With no
doubt that formula computes the Alexander polynomial A,
except I don’t have a proof yet.

The Bracket-Rise Theorem. A" is isomorphic to Proot.
LB L]
L Il
@ (2 in 1 out vertices) T
<
STU, A8,
e and ITH
relations

s, Y

\/fy

RS,

AN TSN

5TUs5 =TC: 0 THX:

[Tubes in 4D.

Broken surface

s Bk -feje)-

Q /\: @ & /‘.>2D5ymbol: Ccié) e
y = © E ‘ = s

% >\Y/'<<:®> :6/ Di/yﬁm:%:
Crossing 2 (0 & Virtual crossingvovies © O &

Corollaries. (1) Related to Lie algebras! (2) Only wheels and

IA Ribbon 2-Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D7 in the interior of B and
a disk Do with Dy N 9B = D4y, modulo isotopies of .S alone.

7-& RBK-R
R NN Kej& yet”°b>/

isolated arrows persist. Habiro - can you do better?
The Alexander Theorem.  T;; = |low(#j) € span(#1i)|,
s; = sign(#1), d; = dir(#i),
S = diag(s;d;),
A=det (I4+T(I—-X"9)).
01111010
00101000
01001000
77— 01001010
01010111 [
01010010
00010100
00010100
X F=diag(%, X, %, X, X, %, X, %

Conjecture. For u-knots, A is the Alexander polynomial.
Theorem. With w : ¥ + wy, = (the k-wheel),
Z = N exp guw (—w(lo o1 Ae” ))

Pa Q=] (e”) Z =N A1 (o)

mod WEpW| = W41,

Proof Sketch. Let E be the Euler operator, “multiply anything by

w—Knots.
T e ) ranoc S
pA (X 37 ) [ Re3 VRi23, D,0C

W\ R Ry G

its degree”, f — zf’ in Q[z], so Fe® = ze® and

- RN 7NN+ FARTANCN - PN SN
EZ = + _
We need to show that Z7'EZ = N’ — tr (I — B)"'T'Se™"%) wx,
with B = T'(e™ %

—1I). Note that ae’—e’a = (1—e*1®)(a)e® implies
e S SR S sty S
_L:’sr:_*_&*f:f(e”*llci[’%_ _C>§:¢:_ _c’f:l_ (1—e h
—_ff:i oy fem)

=0

(The Finite Type Story. With X :=X—-X
set Vp, :={V:wK - Q: V(x~>™) =0}.

arrow diagrams

) e )~

@ Vm/vm—l
%duality
—= @)/ (M) =0

}i )>< m arrows /Z (gr Z) o _ I
Z
TC AY = D/R fiter wk
\‘ AN [ take pride
Q__ ? \(7 in this box

FD_
1?@?1 (esmfl_fj;_ fj‘g_ _C)E\_Y((l esa:)_f‘j;_
0.0-7 D00 | -4

so with the matrices A and Y defined as

Al 1 2 ) 1 2
1 1
LT AN f | e
L AT N\ £ AN N\
2
LTSN | - A SN
we have EZ — N” = tr(SA), A = —BY — Te *%w;, and Y =
BY + Te *%w;. The theorem follows.

So What? e Habiro-Shima did this already, but not quite. (HS: Finite
Type Invariants of Ribbon 2-Knots, II, Top. and its Appl. 111 (2001).)
e New (?) formula for Alexander, new (?) “Infinitesimal Alexander
Module”. Related to Lescop’s arXiv:1001.44747

o An “ultimate Alexander invariant”: local, composes well, behaves
under cabling. Ought to also generalize the multi-variable Alexander
ipolynomial and the theory of Milnor linking numbers.
Tip of the Alekseev-Torossian-Kashiwara-Vergne
Kashiwara- Vergne  conjecture and  Drinfeld’s

iceberg (AT:
associators,

"God created the knots, all else in
- topology is the work of mortals.”
3 Leopold Kronecker (modified)

. The

rXiv:0802.4300).
Tip of the v-knots iceberg. May lead to other polynomial-time
olynomial invariants. “A polynomial’s worth a thousand exponentials”.

Also see http://www.math.toronto.edu/~drorbn/papers/WKO/
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18 Conjectures Theorem. For u-knots, dim V,,/V,,—1 = dim W, for all n.

Dror Bar-Natan, Luminy, April 2010 Proof. This is the Kontsevich integral, or the “Fundamental Theorem of

http://www.math.toronto.edu/~drorbn/Talks/Luminy-1004/ [Finite Type Invariants”. The known proofs use QFT-inspired differential
[Abstract. T will state 18 = 3 x 3 x 2 “funda- [geometry or associators and some homological computations.

meptal” conjecture_s on finite type.invariants _Of Two tables. The following tables show dim V,,/V,—1 and dimW,, for n =
various classes of virtual knots. This done, I will | 5 for 18 classes of v-knots:
. :

state a few further conjectures about these con-

. . relations\skeleton round (Q) long (—) flat (X =X)
Jlegi:‘g:jse?&(ie?i{nz;eg E;;t;%?siigeigz thow these | = oard mod R1 [0,0,1,4,17 e |0,2,7,42,246 o 0,0,1,6,34 o
Following “Some Dimensions of Spaces of Finite| | 72> R2c R3b [no RL [1,1,2,7,29 2,5, 15,67, 365 1,1,2,8, 42
Type Invariants of Virtual Knots”. by B.N, Ha. | | Prad-like mod R1_[0,0,1,4,17 e __[0,2,7,42,246 +__ |0,0,1,6,34
lacheva, Leung, and Roukema, http: //www.math, | | R2b R3b no R1_|1,2,5,19,77 2,7,27,139, 813 1,2,6,24,120 |
toronto.edu,/~drorbn/ , R2 only mod R1 [0,0,4,44,648 |0, 2, 28,420, 7808 ]0,0,2,18, 174
bapers/v-Dims,. R2b R2c no I [1,3,16,160,2248 |2, 10,96, 1332, 23880 |1, 2,9, 63, 570

LRHB by Chu 18 Conjectures. These 18 coincidences persist.

Comments. 0,0,1,4,17 and 0,2,7,42,246. These are the “stan-
dard” virtual knots.

Circuit Algebras

J
cp S 2,7,27,139,813. These best match Lie bi-algebra. Le-
K Q ung computed the bi-algebra dimensions to be >

2,7,27,128. (Comments, Pierre?)
A J-K Flip Flop Infineon HYS64T64020HDL-3.7-4 512MB rRam |@@®. We only half-understand these equalities. Vogel
[Definitions 1,2,6,24,120. Yes, we noticed. Karene Chu is proving all about

N A R1 ~7 7R3~ his, including the classification of flat knots.
oK = /\ p = > K = /\)4 RSS9 849, 258, 1824, 14664, ..., which is probably http://www.
CAg h d research.att.com/ njas/sequences/A013999.
R2c O / What about w? See other side.
/ or What about v-braids? I don’t know.
NN\
\RK_J or (=X
YV, = (vKC/T >
2=1(1A = X)
is one thing we measure.
"" o “arrow diagrams” Vn/Vin-1)"
: 4 y Bang. Recall the surjection 7 : A,, = D,,/RY — 77/ A

The True

Count

One bang! and five compatible
- transfer principles.

Goussarov-Polyak-Viro %’ i \\ filtered map Z : v — A = @ A, such that (grZ) o7 =1 is
+ _ = =X called a universal finite type invariant, or an “expansion”.
RY —’Dn_CAn< H H> I"/T"* ' Theorem. Such Z exist iff 7 : D,/RP — I"/I"! is an
cxact? N=X isomorphism for every class and every n, and iff the 18 con-
’ jectures hold true.
RI: —== =0 ] >< = The Big Bang. Can you find a “homomorphic expansion” Z
R2b: |—+>|+|;>|= 0 R — an expansion that is also a morphism of circuit algebras?

RP =

B Perhaps one that would also intertwine other operations, such
+ B }_H + H" + as strand doubling? Or one that would extend to v-knotted

=N |_>| +|e|7 0 trivalent graphs?
N 7/ - .

e Using generators/relations, finding Z is an exercise in solving

Wy = (Dn/RP)* = (A,)* is the other thing we measure. .. quations in graded spaces.
The Polyak Technique e In the u case, these are the Drinfel’d pentagon and hexagon

. fails in  lequations.
vk = CAg < Zzi >/ R ={8T,etc.} iheucase lo In the w case, these are the Kashiwara-Vergne-Alekseev-

Torossian equations. Composed with 74 : A — U, you get
that the convolution algebra of invariant functions on a Lie
group is isomorphic to the convolution algebra of invariant

functions on its Lie algebra.
e In the v case there are strong indications that you’d get the

R3b:

This is a computable space! { CA<n ) /RS =—= vk /T

4 /r /r equations defining a quantized universal enveloping algebra
D “boitggffsf of T gl and the Etingof-Kazhdan theory of quantization of Lie bi-
R relations in R° Dn /T algebras. That’s why I'm here!

" "God created the knots, all else in
"= topology is the work of mortals."
3 Leopold Kronecker (modified)

s () (125720 )57 (2

www.katlas.org
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“Pentagon and Hexagon Equations Following Furusho”

PENTAGON AND HEXAGON EQUATIONS - FOLLOWING FURUSHO

Zsuzsanna Dancso, University of Toronto, www.math.toronto.edu/zsuzsi

May 25, 2010

GOAL. Understand and simplify Furusho’s proof [F] that
the pentagon equation implies the hexagons.

NOTATION. F, := Lie(X,Y), over k
UF 5 :=univ. envelopping alg.= k<< X, Y >>
non-comm. power series

Z/I]-"(l") = non-comm. poly, degree< k

Ay = “pure 4-braid Lie alg.”
graded completion of:
| — locality
1n space
‘ ikl ikl denote tij =
‘ [ - L
12 3 4 =0 _ ‘ v
‘ “ b 4T
i j k i _; }c
Aj := similar for pure 3-braids

THE HARD PART.
Main Lemma (Linearization). Let ¢ € UF2 be commutator-
primitive (i.e. ¢ € [Fa, Fa)),
w/ ca(p) := coeff. of XY (eqv. [X,Y])=0,
and ¢ satisfies 5-cycle (linearized pentagon) in Ajy:
(5) : @(ti2,taz + toa) + o(t13 + tog, t34) =
= @(ta3, tza)+p(t1a+tis, taa+tsa)+o(t12, ta3).
Then ¢ satisfies 2-cycle and 3-cycle (lin. hexagons) in Fo:

PRINCIPLE. The restriction ASS™M*+D — A55(M) s sur-
jective. Le. if @™ € Z/l]-'ém) is an associator mod deg (m+1),
then it extends to @) an associator mod deg (m+2).
Proof. See [Dr]; [BN] Section 4.

Application. 3 rational associator. [D], [BN]

Proof. Suppose ®*) ¢ Z/l]-"gk) rational assoc. mod deg (k+1).
Base case: 1 € Z/l]:g)).
Want @F+D) = ok) 4 o 7

Pentagon} lin. eqns for }
Hexagons = Y W Q-coeff z

O

homog. deg. (k+1)

3 soln
by PRINCIPLE}: 3Q-soln
O

THEOREM. [F] If ® € U}'g group-like;
co(®) :=coeff. of XY =
d satisfies pentagon in Ay:

D (t12, toz + t2a)D(t13 + taz, t34) =
= ®(to3,t34)P(t12+113, toa+134) P(t12, t23),

then & satisfies hexagons in Ajs:

e(Befhan) = O(ty3, t12)e( 12 ) P(t13, tas) te(t

e(Beths) — B(tgs, tr3)te(82)D(t12, tiz)e(

i.e. ® is an associator.

23)®(t12,t13),
L2)P(t1g, t23) 7",

PROOF. Induction: if ® satisfies pentagon, and satisfies
hexagons mod deg k, we prove that it satisfies hexagons
mod deg (k+1) = @ is an associator.
Base case. Pentagon = the abehamzatlon o) =1 = P is
0 in degree 1. Therefore, ®(*) =1 4+ which satisfies the
pentagon up to degree 2. = k > 3.
Induction Step. PRINCIPLE = 3 an associator®’ (group-
like + pentagon + hexagons), s.t. & = &’ mod deg k.
® — &’ = i +higher order terms
homog. deg. k
pr = ®—9" mod deg (tl) = ¢y primitive;
d, ®’ satisfy pentagon =
= () satisfies “linearized pentagon”;
k>3

24’

MAIN LEMMA >

(see below)

=}, satisfies “linearized hexagons”.

Then since P’ satisfies hexagons; & = &'+ ¢, mod deg (k+1)
= ® satisfies hexagons mod deg (k+1).

Done! O

(2): e(X,Y)+ (Y, X) =0,
(3): X, Y)+ (Y, -X-Y) + p(-X Y, X) = 0.
PROOF. ¥
L (5) = (2) y
the projection ¢ : A4 — F2 defined by: —X|-Y
—X|—-Y

% ‘

sends (5) to (2). ‘ ‘ %
1 2 3 4

II. (5) + (2) = (3)
Step 1. Using (2), rearrange (5):
@(t12,t23) + P(t3a, t13 + ta3) + p(t2s + tos, t12)+
+o(tas, t3a) + p(tiz + iz, taa +134) =0
Denote the left hand side by P (for Pentagon).

Use shorthands: ¢(t12,tes) =: (123),
gO(t34,t13 + t23) =: (43(12)) = (43(21)), etc.
So P = (123) + (43(12)) + ((34)21) + (234) + (1(23)4) = 0.

Denote LHS of (3) by R(X,Y") (for tRiangle).
Let R(123) := R(X,Y) w/ subst. X t12, Y = tag;
R((34>21) SZR(X, Y) W/ subst. X:t23+t24, Y= t12; etc.

Step 2: A fact about ¢.

Since ¢ € [Fa, Fal, “commuting parts can be dropped”:
Application to R.

R(123) = p(t12,t23) + @(t23, —t12 — taz) + @(—ti2 — ta3, t12).
In As, (t12+t2s+ts1) is central (in fact, generates the center).

= = p(t12,t2s) + @(tas, (t12+taz+t31) —t12—123) +
P((tr12+tas+1t31) —ti2 —tas, t12) = @(ti2,t23) + (ta3,t31) +
o(ta1, t12) =

Note that this also implies {(3) <= R(123) =0 in A3}.

Step3: The hard part of the hard part.

Permutation group S4 acts on Ay4. Vo € Sy, oP = 0.
Want: ). 0;P =) R's with various substitutions.

This works: oy :=id, 09 := 4231, 03 := 1342, 04 := 4312.

Z?:l o P =

(123) + (43277 + ((34)21) + (234) + (1(23)4)+
8%+M+((31)24)+(231)+W+ .
F(134) + (24(13)) + ((42)3T) + (342) + (1(34)2)+ _ Cance
+j43/17+ (31(43)) + ((12)34] + (312) + (4(31)2) =< by (2)

(123)+(231) (312)+

1(423) + (234) + (342)+

+((34)21) + (21(34)) + (1(34)2)+

+((31)24) + (24(31)) + (4(31)2) =

On the RHS, V chord ends on strand 2, so
RHS €< t19,to3,t04 >= F3 C Ay
"\— No relations!
FLIP OVER!
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PENTAGON AND HEXAGON EQUATIONS - FOLLOWING FURUSHO, continued.

Step 4: Finish.
Note that (2) = R(Y,X)=—-R(X,Y) = R(X,X)=0.
Use projections F3 — Fa, applied to the equation

pr:F3—>F2 pL=
t1g— X 0=R(X,)Y)+R(X,Y)+ R(X+Y,X)+
tog — Y R(X"f—}/, X)
o> X = R(X+Y,X)=—R(X,Y)
pr:F3—>F2  p2=
t1g — X 0=R(X,X)+R(Y,X)+R(X+Y,X)+
tog — Y R(QX, Y)
tog — X
Expand this ( ) equation in a linear basis =
R(X,Y) = Y5, an(adY )" (X).

But R(Y,X)=—-R(X,Y) = a, =0 when n # 2.
= R(X,Y) = aslY, X].

But c2(p) =0=ay =0 = R(X,Y) = 0. Done! O

(g1 =obvious quotient map
G> =pull strand 4 straight, call this point of S ”o0”.
= get std pure 3-braid on strands 1, 2, 3, except:

d[-

‘ = full twist of first 3 strands is trivial
q = q2q1.

= have to mod out by full twist.

~
~

WHAT WAS SIMPLIFIED?

Removed GT';, GRT and algebraic geometry, and replaced by
use of the ”Principle”. (GT, GRT and algebraic geometry
are used in the proof of the Principle.)

Removed the spherical 5-braid Lie-algebra Bs by translating
the proof of the Main Lemma to Ay4.

The proof of the main lemma was NOT changed. The
”translation” is easy, as A4 and By are almost isomorphic.

NOTE. In the THEOREM, if cz(®) # 5, then @ satisfies a
rescaled version of the hexagons: each exponent is multiplied by

u=1+/24c2(P).

REFERENCES.
[BN] D. Bar-Natan, On associators and the Grothendieck-
Teichmuller group I, Selecta Math, New Series 4 (1998) 183—

ASIDE: ¢ is nice!
The map ¢ in part I of the “hard part” has a nice property:
As

mod out by center =
=<ti12,t23,t24 >
almost an iso)

embed on any
3 strands

./44 Jr2

This is a braid-theoretic analog of p : S4 — S3:
S4 =symmetries of the tetrahedron,

q

S4 permutes sets of opposite edges
= map p: Sy — Ss

permute any
3 points

Su g

S3

Topological interpretation of ¢:
q: Ay — F3 is induced by ¢:

T B
pBy————> spBs———> pB3/] twist

q
pB,; =pure braids on ¢ strands
spB, =pure spherical braids on 4 strands (live in S? x I).

Means: N

-

, similarly for other strands

-

—

CONTINUED TOP RIGHT
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[Dr] V.G. Drinfel’d, On quasitriangular Quasi-Hopf algebras
and a group closely connected with Gal(Q/Q), Leningrad
Math. J. 2 (1991) 829-860.

[F] H. Furusho, Pentagon and hexagon equations Annals of
Math, Vol. 171 (2010), No 1, 545-556.
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“From Stonehenge to Witten”, Oporto, July 2004

From Stonehenge to Witten Skipping all the Details
Oporto Meeting on Geometry, Topology and Physics, July 2004

Stonehenge

It is well known that when the Sun rises on midsummer’s morning
over the "Heel Stone" at Stonehenge, its first rays shine right
through the open arms of the horseshoe arrangement. Thus
astrological lineups, one of the pillars of modern thought, are
much older than the famed Gaussian linking number of two knots.
(D,K)g = ( count
with

signs

The signed Stonehenge\ x
pairing of D and K ’

Thus we consider the generating function of all stellar coincidences:

1 framing-
Z(K)=lim Y 3y (D, K)pD - | dependent | € A(O)
Nooo e p2°¢1(¢) counter-term

Theorem. Modulo Relations, Z(K) is a knot invariant!

When deforming, catastrophes occur when:

A plane moves over an An intersection line cuts The Gauss curve slides

usnIM

Dror Bar—Natan, University of Toronto

Recall that the latter is itself an astrological construct: one of

the standard ways to compute the Gaussian linking number is to
place the two knots in space and then count (with signs) the
number of shade points cast on one of the knots by the other knot,
with the only lighting coming from some fixed distant star.

The 1 .
Ik( )=— E (signs)
Gaussian @ 2 e g
linking ‘ chopsticks
number \y)
& Carl Friedrich Gauss k=2
Dylan Thurston
N :=# of stars A(0)
:= # of chopsticks :=Span

e :=#ofedgesof D

i Vidor Space T our cact,
dvt Libesgues measart 00V,
Q@ : A quadratic Forn on U

QV)=<Lyv> Whee iatygcal oprator.

oriented vertices

AS: T 4T =0

& more relations

¥ Qisd, S0 Q" isan

ey VOV B lon 4P is SAd
olution: Impose s olution: Impose R olution: Multiply by < + - -
— _ _ _ a framing—dependent ém” - vave yHIs e 'bo/? , n‘nﬂ:
B H X sﬁ B U : X: counter—term. S ',rLu' &v P"CQ/& A Sum oF lﬂ/l)d! ‘on
. Mo e kot K,
(see below) (similar argument) (not shown here) - -i@"fv) —
The IHX Relation o Zwrf o) ¢ =
N /. wae .
<@> the red star is your eye. oo (_,)ﬂ l'l( 0
- a P a)(Q )
%oa' i Y=o & wha A st alifs

we get Z(k) Y

So fVH(v) (e V.

1"! Fowrrer Traas Form:
(e:V=)=>(F:VW—¢)

via_ Fly)= {;(\/)C'K"Vi/v. a're/z /
'.Sim/l Facls: P (,,f?f
1. Flo)= ij(v)J-/. 'n";‘h'm
= —i S PA N e
2. .QZ_V'_F NI Q..pyg
—~—— @
3‘ (e%} o e e/ 3, *;:?:,)

whve QUIV)=<Y, LY

P (Bt fe burt oF ke : ,
Foxeivr Townssion F;ﬂul-). Q
p— — . Lo "'\‘
j/ I H X O((‘M"fi’” qu p"if’ njs: Richard Feynman
S AT T S —
It all is perturbative Chern—Simons—Witten theory: : 95 s "’;- 3245 indied "God created the knots,
i ) e %’ 7’; & %‘f all else in topology
/ DA holk (A) exp = /tr (A ANdA + §A ANAN A) : e = is the work of man."
g-connections WRS = > R, 0 Yy
()\i.ina%?)n)l( )\"Vp“ )3 X
> Y. We(D) i ED)— Y D I £(D) ) STT— T
D: Feynman D: Feynman
diagram - diagram l , 2 my‘&;
o’ | : N Leopold Kronecker
s b LN
E‘ X . Sh— S (modified)

Shiing—shen Chern James H Simons This handout is at http://www.math.toronto.edu/~drorbn/Talks/Oporto—0407
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