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A Seifert Dream
Dror Bar-Natan: Talks: Pitzer-250308:
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Abstract. Given a knot K with a Seifert surface Σ, I dream

that the well-known Seifert linking form Q, a quadratic form on

H1(Σ), has plenty docile local perturbations Pϵ such that the for-

mal Gaussian integrals of exp(Q + Pϵ) are invariants of K.

In my talk I will explain what the above means, why this dream

is oh so sweet, and why it is in fact closer to a plan than to a

delusion. Joint with Roland van der Veen.

2025/03/11@09:36

The Seifert-Alexander Formula. With

P,Q ∈ H1(Σ),

Q(P,G) = T 1/2lk(P+,G) − T−1/2lk(P,G+)

∆(K) = det(Q)
∫

2H1(Σ)

dp dx exp Q(p, x) � det(Q)−1

(where � means “ignoring silly factors”).

Dream. There is a similar perturbed Gaussian integral formu-

la for θ, but with integration over 6H1(Σ). The quadratic Q will

be the same as in the Seifert-Alexander formula (but repeated 3

times, for each Tν). The perturbation Pϵ will be given by low-

degree finite type invariants of curves on Σ (possibly also depen-

dent on the intersection points of such curves, or on other infor-

mation coming from Σ).

Evidence. Experimentally (yet undeniably), deg θ is bounded by

the genus of Σ. How else could such a genus bound arise? Further

very strong evidence comes from the conjectural (yet undeniable)

understanding of θ as the two-loop contribution to the Kontsevich

integral [Oh] and/or as the “solvable approximation” of the uni-

versal sl3 invariant [BN1, BV2].

Why so sweet? It will allow us to prove the aforementioned ge-

nus bound and likely, the hexagonal symmetry. Sweeter and dre-

amier, it may allow us to say something about ribbon knots!

ωεβ≔http://drorbn.net/pi25

Thanks for inviting me to Pitzer College!

Right. The 132-crossing torus knot T22/7 (more at ωεβ/TK).

Below. Random knots from [DHOEBL], with 101-115 crossings

(more at ωεβ/DK).

What’s “local”? How will we compute? The Będlewo Alexan-

der formula: Let F be the faces of a knot diagram. Make an F×F

matrix A by adding for each crossing contributions
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at rows / columns (i, j, k, l). Then ∆ = det′
(

(T 1/2A − T−1/2A)/2
)

.

→ → →

(the Seifert algorithm by Emily Redelmeier)

Expect the like for θ! Expect more like θ! Topology first! Resist

the tyranny of quantum algebra!
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θ(T1,T2) is likewise, with harder formulas

and integration over 6E.

From Mexico City, tariffs exempt

Perturbed Gaussian Integration. We say

that Pϵ ∈ ϵQ[x1, . . . xn]⟦ϵ⟧ is M-docile (for

some M : N → N) if for every monomial m

in Pϵ we have degx1,...,xn
(m) ≤ M(degϵ(m)).

Theorem (Feynman). If Q is a quadratic in x1, . . . , xn and Pϵ is

docile, set Zϵ =
∫

Rn dx1 · · · xn exp (Q + Pϵ). Then every coeffi-

cient in the ϵ-expansion of Zϵ is computable in polynomial time

in n. in fact,

∆1/2Zϵ �
〈

exp Q−1(∂xi
), exp Pϵ

〉

=

θ(T, 1) is like that! With ϵ2 = 0,

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Pitzer-250308.
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The Strongest Genuinely Computable Knot

Invariant Since In 2024

The First International On-line Knot Theory Congress

February 1-5, 2025

Dror Bar-Natan

Abstract. “Genuinely computable” means we have computed it for random knots
with over 300 crossings. “Strongest” means it separates prime knots with up to 15
crossings better than the less-computable HOMFLY-PT and Khovanov homology
taken together. And hey, it’s also meaningful and fun.
Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint with van der Veen.

ωεβ:=http://drorbn.net/ktc25

These slides and the code within are online at ωεβ:=http://drorbn.net/ktc25

(I wish all speakers were making their slides available before / for their talks).

(I’ll post the video there too)

A paper-in-progress is at ωεβ/Theta.

If you can, please turn your video on!

ωεβ:=http://drorbn.net/ktc25

Happy birthday, dear Lou!

Lou Kauffman at MSRI, March 1991

ωεβ:=http://drorbn.net/ktc25

Acknowledgement.

This work was supported by NSERC grant RGPIN-2018-04350 and by the Chu
Family Foundation (NYC).

ωεβ:=http://drorbn.net/ktc25

The Strongest Genuinely Computable Knot

Invariant Since In 2024

Strongest? Genuinely Computable?

ωεβ:=http://drorbn.net/ktc25

Strongest.

Testing Θ = (∆, θ) on prime knots up to mirrors and reversals, counting the
number of distinct values (with deficits in parenthesis): (ρ1: [Ro1, Ro2, Ro3, Ov, BV1])

knots (H,Kh) (∆, ρ1) Θ = (∆, θ) (∆, θ, ρ2) all together

reign 2005-22 2022-24 2024 2025-

xing ≤ 10 249 248 (1) 249 (0) 249 (0) 249(0) 249 (0)

xing ≤ 11 801 771 (30) 787 (14) 798 (3) 798 (3) 798 (3)

xing ≤ 12 2,977 (214) (95) (19) (10) (10)

xing ≤ 13 12,965 (1,771) (959) (194) (169) (169)

xing ≤ 14 59,937 (10,788) (6,253) (1,118) (982) (981)

xing ≤ 15 313,230 (70,245) (42,914) (6,758) (6,341) (6,337)

ωεβ:=http://drorbn.net/ktc25

Genuinely Computable. Here’s Θ
on a random 300 crossing knot (from
[DHOEBL]). For almost every other knot
invariant, that’s science fiction.
Gukov: Should take 300 years if Moore’s
law persists.
Us: A few hours on a laptop, 0 GPUs.

ωεβ:=http://drorbn.net/ktc25

Fun. There’s so much more to see in
2D pictures than in 1D ones! Yet almost
nothing of the patterns you see we know
how to prove. We’ll have fun with that
over the next few years. Would you join?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Random knots (from [DHOEBL]) with 101–115 crossings:

ωεβ:=http://drorbn.net/ktc25

The Rolfsen Table:

ωεβ:=http://drorbn.net/ktc25

The torus knots TK13/2, TK17/3, TK13/5, and TK7/6:

ωεβ:=http://drorbn.net/ktc25

The torus knot TK22/7:

ωεβ:=http://drorbn.net/ktc25

Meaningful.

θ gives a genus bound (unproven yet with confidence). We hope (with reason) it
says something about ribbon knots.

ωεβ:=http://drorbn.net/ktc25

Convention.

T , T1, and T2 are indeterminates and T3 := T1T2.

ωεβ:=http://drorbn.net/ktc25

Preparation. Draw an n-crossing knot K
as a diagram D as on the right: all cros-
sings face up, and the edges are marked
with a running index k ∈ {1, . . . , 2n + 1}
and with rotation numbers ϕk .
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ωεβ:=http://drorbn.net/ktc25

Dall-E
image credits:

diamondtraffic.com
image credits:

p = 1− T s

Model T Traffic Rules. Cars always drive forward. When a car crosses over a
sign-s bridge it goes through with (algebraic) probability T s ∼ 1, but falls off with
probability 1− T s ∼ 0. At the very end, cars fall off and disappear. On various
edges traffic counters are placed. See also [Jo, LTW].

1−T T 1−T
−1

T
−1

1 0 0 1

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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α

β

Definition. The traffic function G = (gαβ) (also, the Green function or the
two-point function) is the reading of a traffic counter at β, if car traffic is injected
at α (if α = β, the counter is after the injection point). There are also model-Tν

traffic functions Gν = (gναβ) for ν = 1, 2, 3.
Example.

∑

p≥0(1−T )p = T−1

1 1

0

0 1

T−1

0 1
G =





1 T−1 1
0 T−1 1
0 0 1





ωεβ:=http://drorbn.net/ktc25

Given crossings c = (s, i , j), c0 = (s0, i0, j0), and c1 = (s1, i1, j1), let

F1(c) = s [1/2− g3ii + T s
2g1iig2ji − T s

2g3jjg2ji − (T s
2 − 1)g3iig2ji

+(T s
3 − 1)g2jig3ji − g1iig2jj + 2g3iig2jj + g1iig3jj − g2iig3jj ]

+
s

T s
2 − 1

[(T s
1 − 1)T s

2 (g3jjg1ji − g2jjg1ji + T s
2g1jig2ji )

+ (T s
3 − 1) (g3ji − T s

2g1iig3ji + g2ijg3ji + (T s
2 − 2)g2jjg3ji )

− (T s
1 − 1)(T s

2 + 1)(T s
3 − 1)g1jig3ji ]

F2(c0, c1) =
s1(T

s0
1 − 1)(T s1

3 − 1)g1j1i0g3j0i1
T s1
2 − 1

(T s0
2 g2i1i0 + g2j1j0 − T s0

2 g2j1i0 − g2i1j0)

F3(ϕk , k) = ϕk(g3kk − 1/2)

(Computers don’t care!)

ωεβ:=http://drorbn.net/ktc25

Main Theorem.

The following is a knot invariant: (the ∆ν are normalizations discussed later)

θ(D) := ∆1∆2∆3

(

∑

c

F1(c) +
∑

c0,c1

F2(c0, c1) +
∑

k

F3(ϕk , k)

)

.

D

i 21 j

D

k

ϕ1
j0 i1i0 j1

3

2

D

If these pictures remind you of Feynman diagrams, it’s because they are Feynman
diagrams [BN2].

ωεβ:=http://drorbn.net/ktc25

Lemma 1.

The traffic function gαβ is a “relative invariant”:

R1

R2

R3

α

β

D

(There is some small print for R1 and R2 which change the numbering of the edges and sometimes

collapse a pair of edges into one)

ωεβ:=http://drorbn.net/ktc25

Proof.

(1−T )2+T (1−T ) (1−T )T

T (1−T )

1−T

T

T 2T (1−T )

T

T 2

=

1−T

ωεβ:=http://drorbn.net/ktc25

Lemma 2.

With k+ := k + 1, the “g -rules” hold near a crossing c = (s, i , j): i j

j+ i+

gjβ = gj+β + δjβ giβ = T sgi+β + (1− T s)gj+β + δiβ g2n+,β = δ2n+,β

gαi+ = T sgαi + δαi+ gαj+ = gαj + (1− T s)gαi + δαj+ gα,1 = δα,1

1−T T 1−T
−1

T
−11 0 0 1

ωεβ:=http://drorbn.net/ktc25

Corollary 1.

G is easily computable, for AG = I (= GA), with A the (2n + 1)× (2n + 1)
identity matrix with additional contributions:

c = (s, i , j) 7→

A col i+ col j+

row i −T s T s
− 1

row j 0 −1

For the trefoil example, we have:

A =





















1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1








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ωεβ:=http://drorbn.net/ktc25

And so,

G =












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T 2
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T
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1

0 0 1−T
T 2
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1

T 2
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1
T 2
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T
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1

0 0 1−T
T 2
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−

(T−1)T
T 2

−T+1
1

T 2
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T
T 2
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1

0 0 0 0 0 1 1
0 0 0 0 0 0 1


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Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Note.

The Alexander polynomial ∆ is given by

∆ = T
(−ϕ−w)/2 det(A),

with
ϕ =

∑

k

ϕk , w =
∑

c

s.

We also set ∆ν := ∆(Tν) for ν = 1, 2, 3. This defines and explains the
normalization factors in the Main Theorem.

ωεβ:=http://drorbn.net/ktc25

Corollary 2.

Proving invariance is easy:

?
=

D D

i j k

j+
k+

i+

k++ j++ i++

m n

s

m n

s

i j k

k+

i+

j+

k++ j++ i++

ωεβ:=http://drorbn.net/ktc25

Invariance under R3

This is Theta.nb of http://drorbn.net/ktc25/ap.

Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];

Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/ktc25/ap to compute rotation numbers.

Loading PolyPlot.m from

http://drorbn.net/ktc25/ap to plot 2-variable polynomials.

T3 = T1 T2;

CF[ℰ_] := Expand@Collect[ℰ , g__, F] /. F  Factor;

ωεβ:=http://drorbn.net/ktc25

F1[{s_, i_, j_}] =

CF
s 1/2 - g3ii + T2

s g1ii g2ji - g1ii g2jj - T2s - 1 g2ji g3ii + 2 g2jj g3ii -1 - T3
s g2ji g3ji - g2ii g3jj - T2

s g2ji g3jj + g1ii g3jj +T1s - 1 g1ji T22 s g2ji - T2
s g2jj + T2

s g3jj +T3s - 1 g3ji 1 - T2
s g1ii - T1s - 1 T2s + 1 g1ji + T2s - 2 g2jj + g2ijT2s - 1;

F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1s0 - 1 T2s1 - 1-1 T3s1 - 1 g1,j1,i0 g3,j0,i1 T2s0 g2,i1,i0 - g2,i1,j0 - T2s0 g2,j1,i0 - g2,j1,j0
F3[φ_, k_] = -φ/2 + φ g3kk;

ωεβ:=http://drorbn.net/ktc25

δi_,j_ := If[i === j, 1, 0];

gRs_,i_,j_ := 
gν_jβ_  gν j+β + δjβ, gν_iβ_  Tν

s gνi+β + 1 - Tν
s gν j+β + δiβ,

gν_α_i+  Tν
s gναi + δαi+, gν_α_j+  gνα j + 1 - Tν

s gναi + δα j+

ωεβ:=http://drorbn.net/ktc25

?
=

D D

i j k

j+
k+

i+

k++ j++ i++

m n

s

m n

s

i j k

k+

i+

j+

k++ j++ i++

DSum[Cs___] := Sum[F1[c], {c, {Cs}}] +

Sum[F2[c0, c1], {c0, {Cs}}, {c1, {Cs}}]

lhs = DSum[{1, j, k}, {1, i, k+}, {1, i+, j+}, {s, m, n}] //.

gR1,j,k ⋃ gR1,i,k+ ⋃ gR1,i+,j+;

rhs = DSum[{1, i, j}, {1, i+, k}, {1, j+, k+}, {s, m, n}] //.

gR1,i,j ⋃ gR1,i+,k ⋃ gR1,j+,k+;

Simplify[lhs  rhs]

True

ωεβ:=http://drorbn.net/ktc25

The Main Program Θ[K_] := Module{Cs, φ, n, A, Δ, G, ev, θ},
{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 +=  -Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];
G = Inverse[A];

ev[ℰ_] := Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];θ = ev
k=1

n
F1[Cs〚k〛];θ += ev

k1=1

n 
k2=1

n
F2[Cs〚k1〛, Cs〚k2〛];

θ += ev
k=1

2 n
F3[φ〚k〛, k];

Factor@{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ};

ωεβ:=http://drorbn.net/ktc25

The Trefoil Knot Θ[Knot[3, 1]] // Expand

-1 +
1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2
T2 - T2

2
+ T1 T2

2
- T1

2
T2
2

PolyPlot[Θ[Knot[3, 1]], ImageSize  Tiny]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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The Conway and Kinoshita-Terasaka Knots

GraphicsRow[PolyPlot[Θ[Knot[#]], ImageSize  Tiny] & /@

{"K11n34", "K11n42"}]

(Note that the genus of the Conway knot appears to be bigger than the genus of
Kinoshita-Terasaka)

ωεβ:=http://drorbn.net/ktc25

The Torus Knots TK13/2, TK17/3, TK13,5, and TK7,6

GraphicsRow[ImageCompose[

PolyPlot[Θ[TorusKnot @@ #], ImageSize  480],

TubePlot[TorusKnot @@ # , ImageSize  240],

{Right, Bottom}, {Right, Bottom}

] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

ωεβ:=http://drorbn.net/ktc25

Questions, Conjectures, Expectations, Dreams.

ωεβ:=http://drorbn.net/ktc25

Question 1.

What’s the relationship between Θ and the Garoufalidis-Kashaev invariants
[GK, GL]?

ωεβ:=http://drorbn.net/ktc25

Conjecture 2.

On classical (non-virtual) knots, θ always has hexagonal (D6) symmetry.

ωεβ:=http://drorbn.net/ktc25

Conjecture 3.

θ is the ϵ1 contribution to the “solvable approximation” of the sl3 universal
invariant, obtained by running the quantization machinery on the double
D(b, b, ϵδ), where b is the Borel subalgebra of sl3, b is the bracket of b, and δ the
cobracket. See [BV2, BN1, Sch]

ωεβ:=http://drorbn.net/ktc25

Conjecture 4.

θ is equal to the “two-loop contribution to the Kontsevich Integral”, as studied by
Garoufalidis, Rozansky, Kricker, and in great detail by Ohtsuki
[GR, Ro1, Ro2, Ro3, Kr, Oh].

ωεβ:=http://drorbn.net/ktc25

Fact 5. θ has a perturbed Gaussian integral formula, with integration carried out
over a space 6E , consisting of 6 copies of the space of edges of a knot diagram D.
See [BN2].

Conjecture 6. For any knot K , its genus g(K ) is bounded by the T1-degree of θ:
2g(K ) ≥ degT1

θ(K ).

Conjecture 7. θ(K ) has another perturbed Gaussian integral formula, with
integration carried out over over the space 6H1, consisting of 6 copies of H1(Σ),
where Σ is a Seifert surface for K .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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ωεβ:=http://drorbn.net/ktc25

Question 8.

Is there a direct quantum field theory derivation of θ? Perhaps using the
ϵ-expansion (at constant k!) of Chern-Simons-Witten theory with gauge group
gϵ+ := D(b, b, ϵδ) with some Seifert-surface-dependent gauge fixing?

ωεβ:=http://drorbn.net/ktc25

Expectation 9.

There are many further invariants like θ, given by Green function formulas and/or
Gaussian integration formulas. One or two of them may be stronger than θ and as
computable.

ωεβ:=http://drorbn.net/ktc25

Dream 10.

These invariants can be explained by something less foreign than semisimple Lie
algebras.

ωεβ:=http://drorbn.net/ktc25

Dream 11.

θ will have something to say about ribbon knots.

ωεβ:=http://drorbn.net/ktc25

Thank You!

ωεβ:=http://drorbn.net/ktc25

References.

[BN1] D. Bar-Natan, Everything around sl
ϵ

2+ is DoPeGDO. So what?, talk in Da Nang, May 2019.
Handout and video at ωεβ/DPG.

[BN2] —, Knot Invariants from Finite Dimensional Integration, talks in Beijing (July 2024,
ωεβ/icbs24) and in Geneva (August 2024, ωεβ/ge24).

[BV1] —, R. van der Veen, A Perturbed-Alexander Invariant, Quantum Topology 15 (2024)
449–472, ωεβ/APAI.

[BV2] —, —, Perturbed Gaussian Generating Functions for Universal Knot Invariants, arXiv:
2109.02057.

[DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and
others, Random Knots: A Preliminary Report, lecture notes at ωεβ/DHOEBL. Also a data file
at ωεβ/DD.

[GK] S. Garoufalidis, R. Kashaev, Multivariable Knot Polynomials from Braided Hopf Algebras
with Automorphisms, arXiv:2311.11528.

[GL] —, S. Y. Li, Patterns of the V2-polynomial of knots, arXiv:2409.03557.

[GR] —, L. Rozansky, The Loop Expansion of the Kontsevich Integral, the Null-Move, and
S-Equivalence, arXiv:math.GT/0003187.

ωεβ:=http://drorbn.net/ktc25

[Jo] V. F. R. Jones, Hecke Algebra Representations of Braid Groups and Link Polynomials, Annals
Math., 126 (1987) 335-388.

[Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky’s Rationality Conjecture,
arXiv:math/0005284.

[LTW] X-S. Lin, F. Tian, Z. Wang, Burau Representation and Random Walk on String Links, Pac.
J. Math., 182-2 (1998) 289–302, arXiv:q-alg/9605023.

[Oh] T. Ohtsuki, On the 2–loop Polynomial of Knots, Geom. Top. 11 (2007) 1357–1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial, Ph.D. thesis,
University of North Carolina, Aug. 2013, ωεβ/Ov.

[Ro1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Polynomial and
Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275–296, arXiv:
hep-th/9401061.

[Ro2] —, The Universal R-Matrix, Burau Representation and the Melvin-Morton Expansion of the
Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1–31, arXiv:q-alg/9604005.

[Ro3] —, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:
math/0201139.

ωεβ:=http://drorbn.net/ktc25

[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis, Universiteit Leiden,
September 2020, ωεβ/Scha.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.

8

http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502


diamondtraffic.com
image credits:

Dall-E
image credits:

p = 1 − T s

van der Veen

0

00

0 0

0

7

3 6

5 2

1

The Strongest Genuinely Computable Knot Invariant in 2024
Dror Bar-Natan: Talks: Toronto-241030:

Genuinely Computable. Here’s Θ

on a random 300 crossing knot (from

[DHOEBL]). For almost every other

invariant, that’s science fiction.

Fun. There’s so much more to see in

2D pictures than in 1D ones! Yet al-

most nothing of the patterns you see

we know how to prove. We’ll have

fun with that over the next few years.

Would you join?

Meaningful. θ gives a genus bound (unproven yet with confi-

dence). We hope (with reason) it says something about ribbon

knots.

Conventions. T , T1, and T2 are indeterminates and T3 ≔ T1T2.

ϕ
4
=
−

1

4

1−T−11−T T 1 0 0 T−11

α

β

T−1

0 1

0

0 1 G =





















1 T−1 1

0 T−1 1

0 0 1





















∑

p≥0(1−T )p = T−1

1 1

Thanks for bearing with me!

Abstract. “Genuinely computable” means we have co-

mputed it for random knots with over 300 crossings.

“Strongest” means it separates prime knots with up to

15 crossings better than the less-computable HOMFLY-

PT and Khovanov homology taken together. And hey,

it’s also meaningful and fun.

Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint w-

ith van der Veen.

Acknowledgement. This work was supported by NSERC grant

RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

ωεβ≔http://drorbn.net/to24

Strongest. Testing Θ = (∆, θ) on prime knots up to mirrors and

reversals, counting the number of distinct values (with deficits in

parenthesis): (ρ1: [Ro1, Ro2, Ro3, Ov, BV1])

knots (H,Kh) (∆, ρ1) Θ = (∆, θ) together

reign 2005-22 2022-24 2024-

xing ≤ 10 249 248 (1) 249 (0) 249 (0) 249 (0)

xing ≤ 11 801 771 (30) 787 (14) 798 (3) 798 (3)

xing ≤ 12 2,977 (214) (95) (19) (18)

xing ≤ 13 12,965 (1,771) (959) (194) (185)

xing ≤ 14 59,937 (10,788) (6,253) (1,118) (1,062)

xing ≤ 15 313,230 (70,245) (42,914) (6,758) (6,555)

Preparation. Draw an n-crossing knot K as a

diagram D as on the right: all crossings face up,

and the edges are marked with a running index

k ∈ {1, . . . , 2n + 1} and with rotation numbers ϕk.

Model T Traffic Rules. Cars always drive fo-

rward. When a car crosses over a sign-s brid-

ge it goes through with (algebraic) probability

T s ∼ 1, but falls off with probability

1 − T s ∼ 0. At the very end, cars

fall off and disappear. On various ed-

ges traffic counters are placed. See

also [Jo, LTW].

Definition. The traffic function G = (gαβ) (also,

the Green function or the two-point function) is

the reading of a traffic counter at β, if car traffic

is injected at α (if α = β, the counter is after the injection point).

There are also model-Tν traffic functions Gν = (gναβ) for ν =

1, 2, 3. Example.

Don’t Look.

R11(c)= s
[

1/2 − g3ii + T s
2g1iig2 ji − T s

2g3 j jg2 ji − (T s
2−1)g3iig2 ji

+(T s
3−1)g2 jig3 ji − g1iig2 j j + 2g3iig2 j j + g1iig3 j j − g2iig3 j j

]

+
s

T s
2
−1

[

(T s
1−1)T s

2

(

g3 j jg1 ji − g2 j jg1 ji + T s
2g1 jig2 ji

)

+ (T s
3−1)

(

g3 ji − T s
2g1iig3 ji + g2i jg3 ji + (T s

2−2)g2 j jg3 ji

)

−(T s
1−1)(T s

2+1)(T s
3−1)g1 jig3 ji

]

R12(c0, c1)=
s1(T

s0

1
−1)(T

s1

3
−1)g1 j1i0g3 j0i1

T
s1

2
−1

(

T
s0

2
g2i1i0 + g2 j1 j0 − T

s0

2
g2 j1i0 − g2i1 j0

)

Γ1(ϕ, k) = ϕ(−1/2 + g3kk)

2025/03/10@16:38

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-241030.
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R1

R2

R3

(1−T )2+T (1−T ) (1−T )T

T (1−T )

1−T

T

T 2T (1−T )

T

T 2

=

1−T

i j

j+ i+

Questions, Conjectures, Expectations, Dreams.

Question 1. What’s the relationship between Θ and the

Garoufalidis-Kashaev invariants [GK, GL]?

Conjecture 2. On classical (non-virtual) knots, θ always has he-

xagonal (D6) symmetry.

Conjecture 3. θ is the ϵ1 contribution to the “solvable appro-

ximation” of the sl3 universal invariant, obtained by running the

quantization machinery on the double D(b, b, ϵδ), where b is the

Borel subalgebra of sl3, b is the bracket of b, and δ the cobracket.

See [BV2, BN1, Sch]

Conjecture 4. θ is equal to the “two-loop contribution to the Kon-

tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,

and in great detail by Ohtsuki [GR, Ro1, Ro2, Ro3, Kr, Oh].

Fact 5. θ has a perturbed Gaussian integral formula, with inte-

gration carried out over over a space 6E, consisting of 6 copies of

the space of edges of a knot diagram D. See [BN2].

Conjecture 6. For any knot K, its genus g(K) is bounded by the

T1-degree of θ: 2g(K) ≥ degT1
θ(K).

Conjecture 7. θ(K) has another perturbed Gaussian integral for-

mula, with integration carried out over over the space 6H1, con-

sisting of 6 copies of H1(Σ), where Σ is a Seifert surface for K.

Expectation 8. There are many further invariants like θ, given by

Green function formulas and/or Gaussian integration formulas.

One or two of them may be stronger than θ and as computable.

Dream 9. These invariants can be explained by something less

foreign than semisimple Lie algebras.

Dream 10. θ will have something to say about ribbon knots.

Theorem. With c = (s, i, j), c0 = (s0, i0, j0),

and c1 = (s1, i1, j1) denoting crossings, there is

a quadratic R11(c) ∈ Q(Tν)[gναβ : α, β ∈ {i, j}],

a cubic R12(c0, c1) ∈ Q(Tν)[gναβ : α, β ∈ {i0, j0, i1, j1}], and a

linear Γ1(φ, k) such that the following is a knot invariant:

θ(D) ≔ ∆1∆2∆3
︸  ︷︷  ︸

normalization,

see later





∑

c

R11(c) +
∑

c0,c1

R12(c0, c1) +
∑

k

Γ1(φk, k)




,

If these pictures remind you of Feynman diagrams, it’s because

they are Feynman diagrams [BN2].

j i

s=−1

D D

s=1

i j

i 21

Lemma 1. The traffic function gαβ is a “relative invariant”:

j
k

α

β

D

Proof.

Lemma 2. With k+ ≔ k + 1, the “g-rules” hold

near a crossing c = (s, i, j):

g jβ = g j+β + δ jβ giβ = T sgi+β + (1−T s)g j+β + δiβ g2n+,β = δ2n+,β

gαi+ = T sgαi + δαi+ gα j+ = gα j + (1 − T s)gαi + δα j+ gα,1 = δα,1
Corollary 1. G is easily computable, for AG = I (= GA), with A

the (2n+1)×(2n+1) identity matrix with additional contributions:

c = (s, i, j) 7→

A col i+ col j+

row i −T s T s − 1

row j 0 −1
For the trefoil example, we have:

A =





1 −T 0 0 T − 1 0 0

0 1 −1 0 0 0 0

0 0 1 −T 0 0 T − 1

0 0 0 1 −1 0 0

0 0 T − 1 0 1 −T 0

0 0 0 0 0 1 −1

0 0 0 0 0 0 1





,

G =





1 T 1 T 1 T 1

0 1 1
T 2−T+1

T
T 2−T+1

T
T 2−T+1

T 2

T 2−T+1
1

0 0 1
T 2−T+1

T
T 2−T+1

T
T 2−T+1

T 2

T 2−T+1
1

0 0 1−T
T 2−T+1

1
T 2−T+1

1
T 2−T+1

T
T 2−T+1

1

0 0 1−T
T 2−T+1

−
(T−1)T

T 2−T+1
1

T 2−T+1
T

T 2−T+1
1

0 0 0 0 0 1 1

0 0 0 0 0 0 1





φ

2

1

3

j0 i1

D

i0 j1

This picture gave the invariant its name

Note. The Alexander polynomial ∆ is given by

∆ = T (−φ−w)/2 det(A), with φ =
∑

k φk, w =
∑

c s.

We also set ∆ν ≔ ∆(Tν) for ν = 1, 2, 3.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-241030.
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Corollary 2. Proving invariance is easy:

?
=

D D

i j k

j+

k+

i+

k++ j++ i++

m n

s

m n

s

i j k

k+

i+

j+

k++ j++ i++

Invariance under R3

This is Theta.nb of http://drorbn.net/to24/ap.

,Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];

,T3 = T1 T2;

,CF[ℰ_] :=

Module{vs = Union@Cases[ℰ , g__, ∞], ps, c},

TotalCoefficientRules[Expand[ℰ], vs] /.

(ps_  c_)  Factor[c] Times @@ vsps ;
,R11[{s_, i_, j_}] =

CF
s 1/2 - g3ii + T2

s g1ii g2ji - g1ii g2jj -T2s - 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3
s g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +T1s - 1 g1ji T22 s g2ji - T2

s g2jj + T2
s g3jj +T3s - 1 g3ji1 - T2

s g1ii - T1s - 1 T2s + 1 g1ji +T2s - 2 g2jj + g2ij T2s - 1;
,R12[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1s0 - 1 T2s1 - 1-1 T3s1 - 1 g1,j1,i0 g3,j0,i1 T2s0 g2,i1,i0 - g2,i1,j0 - T2s0 g2,j1,i0 - g2,j1,j0
,Γ1[φ_, k_] = -φ/2 + φ g3kk;

,δi_,j_ := If[i === j, 1, 0];

gRs_,i_,j_ := 
gν_jβ_  gν j+β + δjβ,

gν_iβ_  Tν
s gνi+β + 1 - Tν

s gν j+β + δiβ,
gν_α_i+  Tν

s gναi + δαi+,

gν_α_j+  gνα j + 1 - Tν
s gναi + δα j+

,DSum[Cs___] := Sum[R11[c], {c, {Cs}}] +

Sum[R12[c0, c1], {c0, {Cs}}, {c1, {Cs}}]

lhs = DSum[{1, j, k}, {1, i, k+}, {1, i+, j+},

{s, m, n}] //. gR1,j,k ⋃ gR1,i,k+ ⋃ gR1,i+,j+;

rhs = DSum[{1, i, j}, {1, i+, k}, {1, j+, k+},

{s, m, n}] //. gR1,i,j ⋃ gR1,i+,k ⋃ gR1,j+,k+;

Simplify[lhs  rhs]

§True

The Main Program 

,Θ[K_] := Module{Cs, φ, n, A, Δ, G, ev, θ},
{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 
A〚{i, j}, {i + 1, j + 1}〛 +=  -Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];
G = Inverse[A];

ev[ℰ_] :=

Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];θ = ev
k1=1

n 
k2=1

n
R12[Cs〚k1〛, Cs〚k2〛];θ += ev

k=1

n
R11[Cs〚k〛];θ += ev

k=1

2 n Γ1[φ〚k〛, k];
Factor@

{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ};
The Trefoil, Conway, and Kinoshita-Terasaka

,Θ[Knot[3, 1]] // Expand

§-1 +
1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2
T2 - T2

2
+ T1 T2

2
- T1

2
T2
2

,GraphicsRow[PolyPlot[Θ[Knot[#]]] & /@

{"3_1", "K11n34", "K11n42"}]

§

(Note that the genus of the Conway knot appears to

be bigger than the genus of Kinoshita-Terasaka)

Some Torus Knots 

,TKs = {{13, 2}, {17, 3}, {13, 5}, {7, 6}};

GraphicsRow[PolyPlot[Θ[TorusKnot @@ #]] & /@ TKs]

GraphicsRow[TubePlot[TorusKnot @@ #] & /@ TKs]

§

§

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-241030.
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The 132-crossing torus knot T22/7: (many more at ωεβ/TK)

Random knots from [DHOEBL], with 50-73 crossings: (many more at ωεβ/DK)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-241030.
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Something simple:

numbers, polynomials,

matrices, etc.

invariants

joint with
R. van der Veen

Feynman

Gauss
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Abstract. For the purpose of today, an “I-Type Knot

Invariant” is a knot invariant computed from a knot

diagram by integrating the exponential of a pertur-

bed Gaussian Lagrangian which is a sum over the

features of that diagram (crossings, edges, faces) of

locally defined quantities, over a product of finite di-

mensional spaces associated to those same features.

Q. Are there any such things? A. Yes.

Q. Are they any good? A. They are the strongest we know per

CPU cycle, and are excellent in other ways too.

Q. Didn’t Witten do that back in 1988 with path integrals?

A. No. His constructions are infinite dimensional and far from

rigorous.

Q. But integrals belong in analysis!

A. Ours only use squeaky-clean algebra.

ωεβ≔http://drorbn.net/ge24Knot Invariants from Finite Dimensional Integration
Dror Bar-Natan: Talks: Geneva-2408: Thanks for inviting me to Geneva!

2024/08/13@02:08
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=
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14
pi xi

measure on R is (2π)−1/2·standard

L(X+15)L(X+62)L(X+37)L(C−1
4 )

The sl
/ϵ2

2
Example. With T an indeterminate and with ϵ2 = 0:

where L(Xs
i j

) = T s/2
❡

L(Xs
i j

)
and L(C

φ

i
) =

Tφ/2❡L(C
φ

i
), and

L(Xs
i j) = xi(pi+1 − pi) + x j(p j+1 − p j)

+(T s − 1)xi(pi+1 − p j+1)

+
ϵs

2

(

xi(pi − p j)

(

(T s − 1)xi p j

+2(1 − x j p j)

)

− 1

)

L(C
φ

i
) = xi(pi+1 − pi) + ϵφ(1/2 − xi pi)

So Z = T G

∫

❡
L(✫)dp1 . . . dp7dx1 . . . dx7, where L(✫) =

∑7

i=1
xi(pi+1−pi) + (T−1)(x1(p2 − p6)+x6(p7 − p3)+x3(p4 − p8))

+
ϵ

2





























x1(p1 − p5) ((T − 1)x1 p5 + 2(1 − x5 p5)) − 1

+x6(p6 − p2) ((T − 1)x6 p2 + 2(1 − x2 p2)) − 1

+x3(p3 − p7) ((T − 1)x3 p7 + 2(1 − x7 p7)) − 1

+2x4 p4 − 1





























,

and so Z = (T − 1 + T−1)−1 exp
(

ϵ · (T−2+T−1)(T+T−1)

(T−1+T−1)2

)

=

∆−1 exp

(

ϵ · (T−2+T−1)ρ1

∆2

)

. Here ∆ is Alexander’s polynomial and

ρ1 is Rozansky-Overbay’s polynomial

[R1, R2, R3, Ov, BV1, BV2].

L(X+
62

)

L(C−1
4

)

Knots.

The Good. 1. At the centre of low dimensional topology.

2. “Invariants” connect to pretty much all of algebra.

The Agony. 1&2 don’t talk to each other.

• Not enough topological applications for all these invariants.

• The fancy algebra doesn’t arise naturally within topology.

=⇒We’re still missing something about the relationship between

knots and algebra.

Theorem. Z is a knot invariant. Proof. Use Fubini (details later).

(Alternative) Gaussian Integration.

Goal. Compute

∫

Rn

dx exp

(

−1

2
ai jxix j + V(x)

)

.
(if convergent)

Solution. Set Zλ(x) ≔ λn/2

∫

Rn

dy exp

(

− 1

2λ
ai jyiy j + V(x + y)

)

.

Then Z1(0) is what we want, Z0(x) = (det A)−1/2 exp V(x), and

with gi j the inverse matrix of ai j and noting that under the dy

integral ∂y = 0,
1

2
gi j∂xi

∂x j
Zλ(x)

=
1

2

∫

Rn

dy gi j(∂xi
−∂yi

)(∂x j
−∂y j

) exp

(

− 1

2λ
ai jyiy j + V(x + y)

)

=
1

2λ2

∫

Rn

dy
(

gi ja
ii′a j j′yi′y j′ + λgi ja

ji
)

exp

(

− 1

2λ
ai jyiy j + V(x + y)

)

=
1

2λ2

∫

Rn

dy
(

ai jyiy j + λn
)

exp

(

− 1

2λ
ai jyiy j + V(x + y)

)

= ∂λZλ(x).

Hence (*) ∂λZλ(x) =
1

2
gi j∂xi

∂x j
Zλ(x),

and therefore Zλ(x) = (det A)−1/2 exp

(

λ

2
gi j∂xi

∂x j

)

exp V(x).

We’ve just witnessed the birth of “Feynman Diagrams”.

Even better. With Zλ ≔ log(
√

det AZλ), by a simple

substitution into (*), we get the “Synthesis Equation”:

Z0 = V, ∂λZλ =
1

2

∑n

i, j=1
gi j

(

∂xi,x j
Zλ + (∂xi

Zλ)(∂x j
Zλ)

)

≕ F(Zλ),

an ODE (in λ) whose solution is pure algebra.

Strong. The pair (∆, ρ1) attains 53,684 distinct values on the

59,937 prime knots with up to 14 crossings (a deficit of 6,253),

whereas the pair (H =HOMFLYPT polynomial, Kh =Khovanov

Homology) attains only 49,149 distinct values on the same knots

(a deficit of 10,788). The pair (∆, θ), discussed later, has a deficit

of only 1,118.

Yet better than (H,Kh) and other Reshetikhin-Turaev-Witten i-

nvariants and knot homologies, ∆, ρ1, and θ can be computed in

polynomial time (and hence, even for very large knots).

So ugly as the formulas may be (and θ’s formulas are uglier),

these invariants are the best we have!

Picard Iteration (used to prove the existence and u-

niqueness of solutions of ODEs). To solve ∂λ fλ =

F( fλ) with a given f0, start with f0, iterate f 7→
f0 +

∫ λ

0
F( fλ)dλ, and seek a fixed point. In our cases,

it is always reached after finitely many iterations!

Definition. G

∫

: The result of this process, ignoring the converge-

nce of the actual integral.

Acknowledgement. This work was supported by NSERC grant

RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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Implementation (see IType.nb of ωεβ/ap).

,Once[<< KnotTheory`; << Rot.m];

§C:\drorbn\AcademicPensieve\Projects\KnotTheory\KnotTheory

§Loading KnotTheory` version

of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

§Loading Rot.m from

http://drorbn.net/AP/Talks/Geneva-2408

to compute rotation numbers.

,CF[ω_. ℰ_] := CF[ω]×CF /@ ℰ ;

CF[ℰ_List] := CF /@ ℰ ;

CF[ℰ_] := Module{vs, ps, c},

vs = Casesℰ , (x p ξ π g)__, ∞ ⋃ {ϵ};
TotalCoefficientRules[Expand[ℰ], vs] /.

(ps_  c_)  Factor[c] Times @@ vsps ;
Integration using Picard iteration. The core is in yellow and

hacks are in pink.

, /: [A_]×[B_] := [A + B];

,$π = Identity; (* The Wisdom Projection *)

,Unprotect[Integrate];

 ω_. [L_] (vs_List) :=

Module{n, L0, Q, Δ, G, Z0, Z, λ, DZ, DDZ, FZ,

a, b},

n = Length@vs; L0 = L /. ϵ  0;

Q = Table(-∂vs〚a〛,vs〚b〛L0) /. Thread[vs  0] /.

(p x)__  0, {a, n}, {b, n};
If[(Δ = Det[Q])  0, Return@"Degenerate Q!"];

Z = Z0 = CF@$π[L + vs.Q.vs/2]; G = Inverse[Q];

FixedPointDZ = Table[∂vZ, {v, vs}];

DDZ = Table[∂uDZ, {u, vs}];

FZ = Sum[G〚a, b〛 (DDZ〚a, b〛 + DZ〚a〛×DZ〚b〛),
{a, n}, {b, n}]/2;

Z = CFZ0 + 
0

λ
$π[FZ] λ &, Z;

PowerExpand@Factorω Δ-1/2×[CF[Z /. λ  1 /. Thread[vs  0]]];
Protect[Integrate];

Joseph Fourier

, - μ x
2  2 +  ξ x {x}

§ - ξ2
2 μμ

,
FofG =  - μ (x - a)2  2 +  ξ x {x}

§   (2 a μ+ ξ) ξ
2 μ 
μ

, FofG [- ξ x] {ξ}
§- 1

2

(a - x)2 μ
So we’ve tested and nearly proven the Fourier inversion formula!

,
L = -

1

2
{x1, x2}. a b

b c
.{x1, x2} + {ξ1, ξ2}.{x1, x2};

Z12 =  [L] {x1, x2}

§  c ξ
1
2

2 -b2+a c +
b ξ1 ξ2
b
2
-a c

+
a ξ

2
2

2 -b2+a c
-b

2
+ a c

Guido Fubini

,Z1 =  [L] {x1}, Z12   Z1 {x2}
§- -b2+a c x2

2

2 a
-

b x2 ξ1
a

+
ξ12
2 a

+ x2 ξ2
a

, True
,$π = Normal# + O[ϵ]13 &;  -ϕ2  2 + ϵ ϕ3  6 {ϕ}
§ 5 ϵ2

24

+
5 ϵ4
16

+
1105 ϵ6
1152

+
565 ϵ8
128

+
82825 ϵ10

3072

+
19675 ϵ12

96


From https://oeis.org/A226260:

The Right-Handed Trefoil.

,K = Mirror@Knot[3, 1]; Features[K]

§Features[7, C4[-1] X1,5[1] X3,7[1] X6,2[1]]

,ℒ[Xi_,j_[s_]] := Ts/2 
xi (pi+1 - pi) + xj (pj+1 - pj) +Ts - 1 xi (pi+1 - pj+1) +

(ϵ s/2)×xi (pi - pj) Ts - 1 xi pj + 2 (1 - xj pj) - 1
ℒ[Ci_[φ_]] := Tφ/2 xi (pi+1 - pi) + ϵ φ

1

2
- xi pi 

ℒ[K_] := CF[ℒ /@ Features[K]〚2〛]
vs[K_] :=

Join @@ Table[{pi, xi}, {i, Features[K]〚1〛}]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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,{vs[K], ℒ[K]}
§{p1, x1, p2, x2, p3, x3, p4, x4, p5, x5, p6, x6, p7, x7},

T -2 ϵ - p1 x1 + ϵ p1 x1 + T p2 x1 - ϵ p5 x1 + (1 - T) p6 x1 +

1

2
(-1 + T) ϵ p1 p5 x1

2 +
1

2
(1 - T) ϵ p5

2
x1
2 - p2 x2 + p3 x2 - p3 x3 +

ϵ p3 x3 + T p4 x3 - ϵ p7 x3 + (1 - T) p8 x3 +
1

2
(-1 + T) ϵ p3 p7 x3

2 +

1

2
(1 - T) ϵ p7

2
x3
2 - p4 x4 + ϵ p4 x4 + p5 x4 - p5 x5 + p6 x5 -ϵ p1 p5 x1 x5 + ϵ p5
2
x1 x5 - ϵ p2 x6 + (1 - T) p3 x6 - p6 x6 +ϵ p6 x6 + T p7 x6 + ϵ p2

2
x2 x6 - ϵ p2 p6 x2 x6 +

1

2
(1 - T) ϵ p2

2
x6
2 +

1

2
(-1 + T) ϵ p2 p6 x6

2 - p7 x7 + p8 x7 - ϵ p3 p7 x3 x7 + ϵ p7
2
x3 x7

,$π = Normal# + O[ϵ]2 &;  ℒ[K]  vs[K]

§

-

 T - (-1+T)2 1+T2 ϵ1-T+T22 
1 - T + T

2

A faster program to compute ρ1, and more stories about it, are

at [BV2].

Invariance Under Reidemeister 3.

Reidemeister

top variables

middle variables

bottom variables

k++ j++ i++

i j k

i+

j+

k+

k++ j++ i++

i j k

i+
j+

k+

,lhs =  (ℒ /@ (Xi,j[1] Xi+1,k[1] Xj+1,k+1[1])){pi+1, pj+1, pk+1, xi+1, xj+1, xk+1};

rhs =  (ℒ /@ (Xj,k[1] Xi,k+1[1] Xi+1,j+1[1])){xi+1, pi+1, pj+1, pk+1, xj+1, xk+1};

lhs === rhs

§False

Invariance Under Reidemeister 3, Take 2.

,lhs =  (ℒ /@ (Xi,j[1] Xi+1,k[1] Xj+1,k+1[1])){xi, xj, xk, pi+1, pj+1, pk+1, xi+1, xj+1, xk+1};

rhs =  (ℒ /@ (Xj,k[1] Xi,k+1[1] Xi+1,j+1[1])){xi, xj, xk, xi+1, pi+1, pj+1, pk+1, xj+1, xk+1};

lhs === rhs

§True

,lhs

§Degenerate Q!

Invariance Under Reidemeister 3, Take 3.

, lhs =  ([ πi pi +  πj pj +  πk pk]×ℒ /@ (Xi,j[1] Xi+1,k[1] Xj+1,k+1[1])){pi, pj, pk, xi, xj, xk, pi+1, pj+1, pk+1, xi+1, xj+1, xk+1};

rhs =  ([ πi pi +  πj pj +  πk pk]×ℒ /@ (Xj,k[1] Xi,k+1[1] Xi+1,j+1[1])){pi, pj, pk, xi, xj, xk, pi+1, pj+1, pk+1, xi+1, xj+1, xk+1};

lhs  rhs

§True

,lhs

§T3/2 
-
3 ϵ
2

+  T2 p2+i πi -  (-1 + T) T p2+j πi +  T2 ϵ p2+j πi -  (-1 + T) p2+k πi +
 T ϵ p2+k πi - 1

2
(-1 + T) T3 ϵ p2+i p2+j πi2 + 1

2
(-1 + T) T3 ϵ p2+j

2 πi2 -
1

2
(-1 + T) T2 ϵ p2+i p2+k πi2 + 1

2
(-1 + T)2 T ϵ p2+j p2+k πi2 +

1

2
(-1 + T) T ϵ p2+k

2 πi2 +  T p2+j πj -  T ϵ p2+j πj -  (-1 + T) p2+k πj + (-1 + 2 T) ϵ p2+k πj + T3 ϵ p2+i p2+j πi πj - T3 ϵ p2+j
2 πi πj -

(-1 + T) T2 ϵ p2+i p2+k πi πj + (-1 + T)2 T ϵ p2+j p2+k πi πj +
(-1 + T) T ϵ p2+k

2 πi πj - 1

2
(-1 + T) T ϵ p2+j p2+k πj2 + 1

2
(-1 + T) T ϵ p2+k

2 πj2 + p2+k πk - 2  ϵ p2+k πk + T2 ϵ p2+i p2+k πi πk - (-1 + T) T ϵ p2+j p2+k πi πk -
T ϵ p2+k

2 πi πk + T ϵ p2+j p2+k πj πk - T ϵ p2+k
2 πj πk

Invariance under the other Reidemeister moves is proven in a si-

milar way. See IType.nb at ωεβ/ap.

There’s more! To get sl2 invariants mod ϵ3, add the following

to L(X+
i j

), L(X−
i j

), and L(C
φ

i
), respectively (and see More.nb at ω-

εβ/ap for the verifications):

,ϵ2 r2[1, i, j]

§ 1

12
ϵ2 -6 pi xi + 6 pj xi - 3 (-1 + 3 T) pi pj xi

2 +

3 (-1 + 3 T) pj
2 xi

2 + 4 (-1 + T) pi
2 pj xi

3 - 2 (-1 + T) (5 + T) pi pj
2 xi

3 +

2 (-1 + T) (3 + T) pj
3 xi

3 + 18 pi pj xi xj - 18 pj
2 xi xj - 6 pi

2 pj xi
2 xj +

6 (2 + T) pi pj
2 xi

2 xj - 6 (1 + T) pj
3 xi

2 xj - 6 pi pj
2 xi xj

2 + 6 pj
3 xi xj

2
,ϵ2 r2[-1, i, j]

§ 1

12 T2
ϵ2 -6 T2 pi xi + 6 T2 pj xi +

3 (-3 + T) T pi pj xi
2 - 3 (-3 + T) T pj

2 xi
2 - 4 (-1 + T) T pi

2 pj xi
3 +

2 (-1 + T) (1 + 5 T) pi pj
2 xi

3 - 2 (-1 + T) (1 + 3 T) pj
3 xi

3 +

18 T2 pi pj xi xj - 18 T2 pj
2 xi xj - 6 T2 pi

2 pj xi
2 xj + 6 T (1 + 2 T) pi pj

2 xi
2 xj -

6 T (1 + T) pj
3 xi

2 xj - 6 T2 pi pj
2 xi xj

2 + 6 T2 pj
3 xi xj

2
,ϵ2 γ2[φ, i]

§
-
1

2
ϵ2 φ2 pi xi

Even more! • The sl2 formulas mod ϵ4 are in the last page of the

handout of [BN3].

• Using [GPV] we can show that every finite type invariant is

I-Type.

• Probably, ⟨Reshetikhin-Turaev⟩ ⊂ ⟨I-Type⟩ efficiently.

• Possibly, ⟨Rozansky Polynomials⟩ ⊂ ⟨I-Type⟩ efficiently.

• Knot signatures are I-Type, at least mod 8.

•We already have some work on sl3, and it leads to the strongest

genuinely-computable knot invariant presently known.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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Schaveling

The sl
/ϵ2

3
Example (continues Schaveling [Sch]). H-

ere we have two formal variables T1 and T2, we set

T3 ≔ T1T2, we integrate over 6 variables for each

edge: p1i, p2i, p3i, x1i, x2i, and x3i.

,T3 = T1 T2; i_+ := i + 1;

$π =CF@Normal# + O[ϵ]2 /.πis__  B-1 πis, xis__  B-1 xis,

pis__  B pis /. ϵ Bb_ /; b < 0  0 /. B  1 &;

,vsi_ := Sequence[p1,i, p2,i, p3,i, x1,i, x2,i, x3,i];ℱ[is__] := [Sum[πν,i pν,i, {i, {is}}, {ν, 3}]];ℒ[K_] := CF[ℒ /@ Features[K]〚2〛];
vs[K_] :=

Union @@ Table[{vsi}, {i, Features[K]〚1〛}]
The Lagrangian.

,ℒ[Xi_,j_[s_]] := T3
s CF@Plusν=13 xνi (pνi+ - pνi) + xνj (pνj+ - pνj) + Tνs - 1 xνi (pνi+ - pνj+),T1s - 1 p3j x1i T2s x2i - x2j,ϵ s T3s - 1 p1j (p2i - p2j) x3i  T2s - 1,ϵ s 1/2 + T2

s
p1i p2j x1i x2i - p1i p2j x1i x2j - p3i x3i -T2s - 1 p2j p3i x2i x3i + T3s - 1 p2j p3j x2i x3i +

2 p2j p3i x2j x3i + p1i p3j x1i x3j - p2i p3j x2i x3j -

T2
s
p2j p3j x2i x3j +T1s - 1 p1j x1i T22 s p2j x2i - T2

s
p2j x2j -T2s + 1 T3s - 1 p3j x3i + T2
s
p3j x3j +T3s - 1 p3j x3i 1 - T2

s
p1i x1i + p2i x2j + T2s - 2 p2j x2jT2s - 1

,ℒ[Ci_[φ_]] := T3
φ ν=13

xνi (pνi+ - pνi) + ϵ φ (p3i x3i - 1/2)
Reidemeister 3.

,Short
lhs =  ℱ[i, j, k]×ℒ /@ (Xi,j[1] Xi+,k[1] Xj+,k+[1])

{vsi, vsj, vsk, vsi+, vsj+, vsk+}
§T1

3 T2
3

 3 ϵ
2

+ T1
2 p1,2+i π1,i - (-1 + T1) T1 p1,2+j π1,i +150

,rhs =  ℱ[i, j, k]×ℒ /@ (Xj,k[1] Xi,k+[1] Xi+,j+[1]){vsi, vsj, vsk, vsi+, vsj+, vsk+};

lhs  rhs

§True

The Trefoil.

,
K = Knot[3, 1];  ℒ[K]  vs[K]

§- T
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-
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4
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1
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1
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T
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A faster program, in which the Feynman diagrams

are “pre-computed” (see theta.nb at ωεβ/ap):

,R1[s_, i_, j_] = CF
s 1/2 - g3ii + T2

s g1ii g2ji - g1ii g2jj - T2s - 1 g2ji g3ii +

2 g2jj g3ii - 1 - T3
s g2ji g3ji - g2ii g3jj - T2

s g2ji g3jj +

g1ii g3jj +T1s - 1 g1ji T22 s g2ji - T2
s g2jj + T2

s g3jj +T3s - 1 g3ji 1 - T2
s g1ii - T1s - 1 T2s + 1 g1ji +T2s - 2 g2jj + g2ij T2s - 1;

,θ[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1s0 - 1 T2s1 - 1-1 T3s1 - 1 g1,j1,i0 g3,j0,i1 T2s0 g2,i1,i0 - g2,i1,j0 - T2s0 g2,j1,i0 - g2,j1,j0
,Γ1[φ_, k_] = -φ/2 + φ g3kk;

We call the invariant computed θ:

,θ[K_] := Module{Cs, φ, n, A, s, i, j, k, Δ, G, ν, α, β, gEval, c, z},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 
A〚{i, j}, {i + 1, j + 1}〛 +=  -Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];
G = Inverse[A];

gEval[ℰ_] := Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

z = gEval
k1=1

n 
k2=1

n θ[Cs〚k1〛, Cs〚k2〛];
z += gEval

k=1

n
R1 @@ Cs〚k〛;

z += gEval
k=1

2 n Γ1[φ〚k〛, k];
{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) z} // Factor ;

Some Knots.

,Expand[θ[Knot[3, 1]]]

§-1 +
1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2
T2 - T2

2
+ T1 T2

2
- T1

2
T2
2

,PolyPlot[0] = Graphics[{}];

PolyPlot[p_] := Module{crs, m1, m2, maxc, minc, s, hex},

crs = CoefficientRulesT1m1=-Exponent[p,T1,Min] T2m2=-Exponent[p,T2,Min] p,
{T1, T2};

maxc = N@Log@Max@Abs[Last /@ crs];

minc = N@Log@Min@Select[Abs[Last /@ crs], # > 0 &];

If[minc  maxc, s[_] = 0,

s[c_] := s[c] = (maxc - Log@c)/(maxc - minc)];

hex = Table[{Cos[α], Sin[α]}/Cos[2 π/12]/2,

{α, 2 π/12, 2 π, 2 π/6}];

Graphicscrs /. ({x1_, x2_}  c_)  
If[c  0, White, Lighter[If[c > 0, Red, Blue],

0.88 s[Abs@c]]],

Polygon 1 -1/2

0 3  2
.{x1 + m1, x2 + m2} + # & /@ hex  ;

PolyPlot[{Δ_, θ_}] := PolyPlot[θ]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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K11n34 K11n42

,GraphicsRow[PolyPlot[θ[Knot[#]]] &

/@ {"3_1", "K11n34", "K11n42"}]

§

Conway Kinoshita Terasaka

So θ detects knot mutation and se-

parates the Conway knot K11n34

from the Kinoshita-Terasaka knot

K11n42!

,GraphicsRow[PolyPlot[θ[TorusKnot @@ #]] &

/@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}},

Spacings  0]

§

Gompf Scharlemann Thompson

The 48-crossing Gompf-

Scharlemann-Thompson knot

[GST] is significant because it may

be a counterexample to the slice-

ribbon conjecture:
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,AbsoluteTiming@

PolyPlotθEPDX14,1, X2,29, X3,40, X43,4, X26,5, X6,95, X96,7, X13,8, X9,28,

X10,41, X42,11, X27,12, X30,15, X16,61, X17,72, X18,83, X19,34, X89,20,

X21,92, X79,22, X68,23, X57,24, X25,56, X62,31, X73,32, X84,33, X50,35,

X36,81, X37,70, X38,59, X39,54, X44,55, X58,45, X69,46, X80,47, X48,91,

X90,49, X51,82, X52,71, X53,60, X63,74, X64,85, X76,65, X87,66, X67,94,

X75,86, X88,77, X78,93

§

39.0193, 

The torus knot

T22/7:

Last, a random 250 crossing knot (knot from N. Dunfield; more

at ωεβ/DK):

Ohtsuki Garoufalidis Kashaev

Prior Art. θ is probably equal

to the “2-loop polynomial” stu-

died by Ohtsuki at [Oh2] (at

much greater difficulty, and w-

ith harder computations). θ is

related, but probably not equivalent, to the invariant studied by

Garoufalidis and Kashaev at [GK].

θ Sees Topology! Indeed, for a knot K, half the T1 degree (say) of

θ(K) bounds the genus of K from below, and this bound is some-

times better (and sometimes worse) than the bound coming from

∆. It is fair to hope that “anything ∆ can do θ can do too” (see

[BN2]), and in particular, that θ may say something about ribbon

and/or slice properties.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.

17

http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408


The Rolfsen Table of Knots.

Where is it coming from? The most honest answer is “we don’t

know” (and that’s good!). The second most, “undetermined co-

efficients for an ansatz that made sense”. The ansatz comes from

the following principles / earlier work:

Morphisms have generating functions. Indeed, there is an iso-

morphism

G : Hom(Q[xi],Q[y j])→ Q[y j]⟦ξi⟧,

and by PBW, many relevant spaces are polynomial rings, though

only as vector spaces.

Composition is integration. Indeed, if f ∈ Hom(Q[xi],Q[y j])

and g ∈ Hom(Q[y j],Q[zk]), then

G(g ◦ f ) =

∫
❡
−y·η f g dy dη

Use universal invariants. These take values in a universal enve-

loping algebra (perhaps quantized), and thus they are expressible

as long compositions of generating functions. See [La, Oh1].

“Solvable approximation” { perturbed Gaussians. Let g be

a semisimple Lie algebra, let h be its Cartan subalgebra, and let

bu and bl be its upper and lower Borel subalgebras. Then bu has

a bracket β, and as the dual of bl it also has a cobracket δ, and in

fact, g ⊕ h ≡ Double(bu, β, δ). Let g+ϵ ≔ Double(bu, β, ϵδ) (mod

ϵd+1 it is solvable for any d). Then by [BV3, BN1] (in the case

of g = sl2) all the interesting tensors ofU(g+ϵ ) (quantized or not)

are perturbed Gaussian with perturbation parameter ϵ with with

understood bounds on the degrees of the perturbations.

The Philosophy Corner. “Univer-

sal invariants”, valued in universal e-

nveloping algebra (possibly quanti-

zed) rather than in representations

thereof, are a priori better than the

representation theoretic ones. They

are compatible with strand doubling

(the Hopf coproduct), and as the

knot genus and the ribbon property

for knots are expressible in terms of strand doubling, universal i-

nvariants stand a chance to say something about these properties.

Indeed, they sometimes do! See e.g. [BN2, Oh2, GK, LV, BG].

Representation theoretic invariants don’t do that!

[BN1] D. Bar-Natan, Everything around slϵ
2+

is DoPeGDO. References.
So what?, talk given in “Quantum Topology and Hyperbolic Geometry Con-

ference”, Da Nang, Vietnam, May 2019. Handout and video at ωεβ/DPG.

[BN2] D. Bar-Natan, Algebraic Knot Theory, talk given in Sydney, September

2019. Handout and video at ωεβ/AKT.

[BN3] D. Bar-Natan, Cars, Interchanges, Traffic Counters, and some Pretty

Darned Good Knot Invariants, talk given in “Using Quantum Invariants to

do Interesting Topology”, Oaxaca, Mexico, October 2022. Handout and vi-

deo at ωεβ/Cars.

[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial,

Proc. Amer. Math. Soc. 147 (2019) 377–397, arXiv:1708.04853.

[BV2] D. Bar-Natan and R. van der Veen, A Perturbed-Alexander Invariant, to

appear in Quantum Topology, ωεβ/APAI.

[BV3] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Fu-

nctions for Universal Knot Invariants, arXiv:2109.02057.

[BG] J. Becerra Garrido, Universal Quantum Knot Invariants, Ph.D. thesis,

University of Groningen, ωεβ/BG.

[GK] S. Garoufalidis and R. Kashaev, Multivariable Knot Polynomials from

Braided Hopf Algebras with Automorphisms, arXiv:2311.11528.

[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and

Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectu-

res, Geom. and Top. 14 (2010) 2305–2347, arXiv:1103.1601.

[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants

of classical and virtual knots, Topology 39 (2000) 1045–1068, arXiv:

math.GT/9810073.

[La] R. J. Lawrence, Universal Link Invariants using Quantum Groups, Proc.

XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England,

August 1988. World Scientific (1989) 55–63.

[LV] D. López Neumann and R. van der Veen, Genus Bounds from Unrolled

Quantum Groups at Roots of Unity, arXiv:2312.02070.

[Oh1] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29,

World Scientific 2002.

[Oh2] T. Ohtsuki, On the 2–Loop Polynomial of Knots, Geom. Topol. 11-3

(2007) 1357–1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,

Ph.D. thesis, University of North Carolina, August 2013, ωεβ/Ov.

[R1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones

Polynomial and Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys.

175-2 (1996) 275–296, arXiv:hep-th/9401061.

[R2] L. Rozansky, The Universal R-Matrix, Burau Representation and the

Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math.

134-1 (1998) 1–31, arXiv:q-alg/9604005.

[R3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality

Conjecture, arXiv:math/0201139.

[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis,

Universiteit Leiden, September 2020, ωεβ/Scha.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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Zombies: Freepik.com
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Exactly what we want, if the Zombian is the signature!

V: The full space of faces.

W: The boundary, made of gaps.

Q: The known parts.

U: The part yet unknown.

σV(Q + φ∗(U)): The overall Zombian.

σ(Q|ker φ): An internal bit. U + φ∗Q: A boundary bit.

And so our ZPUC is the pair S = (σ(Q|ker φ), φ∗Q).

Abstract. Following a general discussion of the co-

mputation of zombians of unfinished columbaria (with

examples), I will tell you about my recent joint work

w/ Jessica Liu on what we feel is the “textbook” exten-

sion of knot signatures to tangles, which for unknown

reasons, is not in any of the textbooks that we know.

Jacobian, Hamiltonian, ZombianColumbaria in an East Sydney Cemetery

Prior Art on signatures for tangles / braids. Gambaudo

and Ghys [GG], Cimasoni and Conway [CC], Conway [Co],

Merz [Me]. All define signatures of tangles / braids by first clo-

sing them to links and then work hard to derive composition pro-

perties.

Why Tangles? • Faster!

• Conceptually clearer proofs of invariance

(and of skein relations).

• Often fun and consequential:

◦ The Jones Polynomial{ The Temperley-Lieb Algebra.

◦ Khovanov Homology{ “Unfinished complexes”, complexes

in a category.

◦ The Kontsevich Integral

{ Associators.

◦ HFK{ OMG, type D,

type A,A∞, . . .

Columbarium near Assen

Computing Zombians of Unfinished Columbaria.

• Must be no slower than for finished ones.

• Future zombies must be able to complete the

computation.

• Future zombies must not even know the size

of the task that today’s zombies were facing.

• We must be able to extend to ZPUCs, Zombie

Processed Unfinished Columbaria!

Example / Exercise. Compute the determinant

of a 1, 000 × 1, 000 matrix in which 50 entries

are not yet given.

Homework / Research Projects. • What with ZPUCs? • Use

this to get an Alexander tangle invariant.

K
n

o
t-

te
a
se

Reminders. {links}⇒ {matrices / quadratic forms}
signature
−−−−−−→

σ
Z:

→ →

A = ĀT
→

http://drorbn.net/usc24Shifted Partial Quadratics, their Pushforwards, and Signature Invariants for Tangles
Dror Bar-Natan: Talks: USC-240205: Thanks for allowing me at USC!

Kashaev’s Conjecture [Ka]

Liu’s Theorem [Li].
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Kashaev
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(TL) (Kas)
With |ω| = 1, t = 1 − ω, r = t + t̄, v = Re(ω), and u = Re(ω1/2):

For links, σKas = 2σTL.

A Shifted Partial Quadratic (SPQ) on V is a pair S = (s ∈
Z,Q a PQ on V). addition also adds the shifts, pullbacks keep the

shifts, yet φ∗S ≔ (s + σker φ(Q|ker φ), φ∗Q) and σ(S ) ≔ s + σ(Q).

Theorem 1’ (Reciprocity). Given φ : V → W, for SPQs S on

V and U on W we have σV(S + φ∗U) = σW(U + φ∗S ) (and this

characterizes φ∗S ). Note. ψ∗ is additive but φ∗ is not.

Theorem 2. ψ∗ and φ∗ are functorial.

Theorem 3. “The pullback of a pushforward scene is

a pushforward scene”: If, on the right, β and δ are ar-

bitrary, Y = EQ(β, γ) = V ⊕Z W = {(v,w) : βv = γw} and µ and ν

are the obvious projections, then γ∗β∗ = ν∗µ
∗.

Gist of the Proof.

U

A B

B̄T

row/col

ops

σ(Q|ker φ)
simul.

C̄T F = F̄T

C

. . . and the quadratic F ≕ φ∗Q is well-defined only on D ≔ ker C.

U + F

0

±1
0

0

0

0 C̄T

C

0

0

. . .
±1

W
V

W

W

A Partial Quadratic (PQ) on V is a quadratic Q defined only on

a subspace DQ ⊂ V . We add PQs with DQ1+Q2
≔ DQ1

∩ DQ2
.

Given a linear ψ : V → W and a PQ Q on W, there is an obvious

pullback ψ∗Q, a PQ on V .

Theorem 1. Given a linear φ : V → W and a PQ Q on V , there is

a unique pushforward PQ φ∗Q on W such that for every PQ U on

W, σV(Q + φ∗U) = σker φ(Q|ker φ) + σW(U + φ∗Q).

(If you must, D(φ∗Q) = φ(annQ(D(Q) ∩ ker φ)) and (φ∗Q)(w) = Q(v),

where v is s.t. φ(v) = w and Q(v, rad Q|ker φ) = 0).
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.

Theorem 4. {S(cyclic sets)} is a

planar algebra, with compositions

S(D)((S i)) ≔ φD
∗ (ψ∗

D
(
⊕

i
S i)), where

ψD : ⟨ fi⟩ → ⟨gαi⟩ maps every face of D

to the sum of the input gaps adjacent to

it and φD : ⟨ fi⟩ → ⟨gi⟩ maps every face to the sum of the output

gaps adjacent to it. So for our D, ψD : f1 7→ g34, f2 7→ g31+g14+g24+g33,

f3 7→ g32, f4 7→ g11, f5 7→ g13+g21, f6 7→ g23, f7 7→ g12+g22 and φD :

f1 7→ g1, f2 7→ g2+g6, f3 7→ 0, f4 7→ g3, f5 7→ 0, f6 7→ g5, f7 7→ g4 .

Theorem 5. TL and Kas, defined on

X and X̄ as before, extend to planar

algebra morphisms {tangles} → {S}.
Restricted to links, TL = σTL and Kas = σKas.

f1

f2

f4

f5

f6

f7
f3

Connection Diagram

D

1

2

3

g12

g13

g14

g22 g24

g21

g11

g31

g23

g33

g2g3

g4

g5 g6

g1g34g32

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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Gauss

Gauss Diagrams.

2 3 3 4λ :

References.
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Rooting the BKT for FTI
Dror Bar-Natan: Talks: Tokyo-230911:
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3

4
5

6

7
8

Goussarov-Polyak-Viro

D1 D2 D4 D5 D6D3D0 D7

Knot: Piccirillo

n crossingsLength L length l

Question ([BBHS], ωεβ/

Fields). For computations,

planar projections are better

than braids (as likely l ∼ n3/2).

But are yarn balls better than

planar projections (here likely n ∼ L4/3)?

Abstract. Following joint work with Itai Bar-Natan, Iva Halache-

va, and Nancy Scherich, I will show that the Best Known Time

(BKT) to compute a typical Finite Type Invariant (FTI) of type d

on a typical knot with n crossings is roughly equal to nd/2, which

is roughly the square root of what I believe was the standard be-

lief before, namely about nd.

Thanks for inviting me to UTokyo!

ωεβ≔http://drorbn.net/tok2309

Acknowledgement. This work was partially supported by NSERC

grant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

My Primary Interest. Strong, fast, homomorphic knot and tan-

gle invariants. ωεβ/Nara, ωεβ/Kyoto, ωεβ/Tokyo

Conventions. • n ≔ {1, 2, . . . , n}. • For complexity estimates we

ignore constant and logarithmic terms: n3 ∼ 2023d!(log n)dn3.

A Key Preliminary. Let Q ⊂

nl be an enumerated subset, with

1 ≪ q = |Q| ≪ nl. In time ∼ q

we can set up a lookup table of

size ∼ q so that we will be able

to compute |Q ∩ R| in time ∼ 1,

for any rectangle R ⊂ nl.

Fails. • Count after R is prese-

nted. • Make a lookup table of

|Q ∩ R| counts for all R’s. R

Unfail. Make a restricted loo-

kup table of the form
{

R
dyadic

→ |Q ∩ R|
>0

}

.

• Make the table by running

through x ∈ Q, and for each

one increment by 1 only the

entries for dyadic R ∋ x (or

create such an entry, if it di-

dn’t exist already). This takes

q · (log2 n)l ∼ q ops.

• Entries for empty dyadic R’s are not needed and not created.

• Using standard sorting techniques, access takes log2 q ∼ 1 ops.

• A general R is a union of at most (2 log2 n)l ∼ 1 dyadic ones,

so counting |Q ∩ R| takes ∼ 1 ops.

Generalization. Without changing the conclusion, replace

counts |Q∩R| with summations
∑

R θ, where θ : nl → V is suppor-

ted on a sparse Q, takes values in a vector space V with dim V ∼ 1,

and in some basis, all of its coefficients are “easy”.

Here’s |G| = n = 100

G
K

Definitions. Let G ≔ Q⟨Gauss Diagrams⟩, with Gd / G≤d the

diagrams with exactly / at most d arrows. Let ϕd : G → Gd be

ϕd : G 7→
∑

D⊂G, |D|=d

D =
∑

D∈(G
d)

D, and let ϕ≤d =
∑

e≤d ϕe.

Naively, it takes
(

n

d

)

∼ nd

ops to compute ϕd.
2023/09/11@06:00

The [GPV] Theorem. A knot invariant is fi-

nite type of type d iff it is of the form ω ◦ ϕ≤d

for some ω ∈ G∗
≤d

.

• ⇐ is easy;⇒ is hard and IMHO not well understood.

• ϕ≤d is not an invariants and not every ω gives an invariant!

• The theory of finite type invariants is very rich. Many knot

invariants factor through finite type invariants, and it is possible

that they separate knots.

• We need a fast algorithm to compute ϕ≤d!

Our Main Theorem. On an n-arrow Gauss diagram, ϕd can be

computed in time ∼ n⌈d/2⌉.

Proof. With d = p + l (p for “put”, l for “lookup”), pick p arrows

and look up in how many ways the remaining l can be placed in

between the legs of the first p:

ϕ3

To reconstruct D = P#λL from P and L we need a non-decreasing

“placement function” λ : 2l→ 2p + 1.

ϕd(G) =
∑

D∈(G
d)

D =

(

d

p

)−1
∑

P∈(G
p)

∑

non-decreasing
λ : 2l→2p+1

∑

L∈(G
l )

Li∈(Pλ(i)−1 ,Pλ(i))

P#λL

Define θG : 2n2l → Gl by

(L1, . . . , L2l) 7→















L if (L1, . . . , L2l) are the ends of some L ⊂ G

0 otherwise

and now ϕd(G) =

(

d

p

)−1
∑

P∈(G
p)

∑

non-decreasing
λ : 2l→2p+1

P#λ



















∑

∏

i(Pλ(i)−1,Pλ(i))

θG



















can be computed in time ∼ np + nl. Now take p = ⌈d/2⌉. □

[BBHS] D. Bar-Natan, I. Bar-Natan, I. Halacheva, and N. Scherich, Yarn Ball Knots and

Faster Computations, J. of Appl. and Comp. Topology (to appear), arXiv:2108.10923.

[GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and

virtual knots, Topology 39 (2000) 1045–1068, arXiv:math.GT/9810073.

(signs suppressed):

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Tokyo-230911/
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Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants
University of Toronto: Dror Bar-Natan: Talks: Nara-2308:

i+1 j+1j+1 i+1

(n = 3)

T
δ

U

We seek strong, fast, homomorphic knot and tangle invariants.

Strong. Having a small “kernel”.

Fast. Computable even for large knots (best: poly time).

d1

Why care for “Homomorphic”? Theorem. A knot K is ribbon

iff there exists a 2n-component tangle T with skeleton as below

such that τ(T ) = K and where δ(T ) = U is the untangle:

Homomorphic. Extends to tan-

gles and behaves under tangle

operations; especially gluings

and doublings:

K

τ

Hear more at ωεβ/AKT.

Acknowledgement. This work was supported by NSERC grant

RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

ωεβ≔http://drorbn.net/na23Thanks for inviting me to Nara!

Abstract. Reporting on joint w-

ork with Roland van der Veen, I’ll

tell you some stories about ρ1, an

easy to define, strong, fast to compute, homomorphic,

and well-connected knot invariant. ρ1 was first studied by Ro-

zansky and Overbay [Ro1, Ro2, Ro3, Ov] and Ohtsuki [Oh2],

it has far-reaching generalizations, it is elementary and domina-

ted by the coloured Jones polynomial, and I wish I understood it.

Common misconception. Dominated, elementary⇒ lesser.

Formulas. Draw an n-crossing knot K as on the ri-

ght: all crossings face up, and the edges are marked

with a running index k ∈ {1, . . . , 2n + 1} and with

rotation numbers ϕk. Let A be the (2n+1)× (2n+1)

matrix constructed by starting with the identity ma-

trix I, and adding a 2 × 2 block for each crossing:

ij

s = −1

Let G = (gαβ) = A−1. For the trefoil example, it is:

A =





























































1 −T 0 0 T − 1 0 0

0 1 −1 0 0 0 0

0 0 1 −T 0 0 T − 1

0 0 0 1 −1 0 0

0 0 T − 1 0 1 −T 0

0 0 0 0 0 1 −1

0 0 0 0 0 0 1





























































,

G =

































































1 T 1 T 1 T 1

0 1 1
T 2−T+1

T
T 2−T+1

T
T 2−T+1

T 2

T 2−T+1
1

0 0 1
T 2−T+1

T
T 2−T+1

T
T 2−T+1

T 2

T 2−T+1
1

0 0 1−T
T 2−T+1

1
T 2−T+1

1
T 2−T+1

T
T 2−T+1

1

0 0 1−T
T 2−T+1

−
(T−1)T

T 2−T+1
1

T 2−T+1
T

T 2−T+1
1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

































































Note. The Alexander polynomial ∆ is given by

∆ = T (−ϕ−w)/2 det(A), with ϕ =
∑

k

ϕk, w=
∑

c

s.

Classical Topologists: This is boring. Yawn.

A col i+1 col j+1

row i −T s T s − 1

row j 0 −1

c :

i j

s = +1

ϕ
4
=
−

1

Formulas, continued. Finally, set

R1(c) ≔ s
(

g ji

(

g j+1, j + g j, j+1 − gi j

)

− gii

(

g j, j+1 − 1
)

− 1/2
)

ρ1 ≔ ∆
2















∑

c

R1(c) −
∑

k

ϕk (gkk − 1/2)















.

In our example ρ1 = −T 2 + 2T − 2 + 2T−1 − T−2.

Theorem. ρ1 is a knot invariant. Proof: later.

Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic

Counters. Cars always drive forw-

ard. When a car crosses over a bridge

it goes through with (algebraic) pro-

bability T s ∼ 1, but falls off with probability 1 − T s ∼ 0∗. At the

very end, cars fall off and disappear. See also [Jo, LTW].

More at ωεβ/APAI

4

“The Green Function”

Jones:

Formulas stay;

interpretations change with time.

∗ In algebra x ∼ 0 if for every y in the ideal generated by x, 1 − y is invertible.

1−T T 1 0 0 T−11 1−T−1

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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Jessica Liu

Image: Freepik.com

Zombies: Freepik.com

Image by macrovector on Freepik.com

“Nautical Knots”

Computing the Zombian of an Unfinished Columbarium
Dror Bar-Natan: Talks: Ottawa-2306:

n/2

2n/2 + 2n/2 + 2
√

n ≪ 2n

n/2√
n

T T =

Apology. It’s a 20 minutes talk. Necessarily, it will be superficial.

Abstract. The zombies need to compute a quantity, the zombian,

that pertains to some structure — say, a columbarium. But un-

fortunately (for them), a part of that structure will only be known

in the future. What can they compute today with the parts they

already have to hasten tomorrow’s computation?

That’s a common quest, and I will illustrate it with a few exa-

mples from knot theory and with two examples about matrices —

determinants and signatures. I will also mention two of my dre-

ams (perhaps delusions): that one day I will be able to reproduce,

and extend, the Rolfsen table of knots using code of the highest

level of beauty.

ωεβ≔http://drorbn.net/ott23Thanks for inviting me to Ottawa!

Confession. It’s about 50% of what I do.

Jacobian, Hamiltonian, ZombianColumbaria in an East Sydney Cemetery

Columbarium near Assen

Computing Zombians of Unfinished Columbaria.

• Future zombies must be able to complete the

computation.

• Must be no slower than for finished ones.

• Future zombies must not even know the size

of the task that today’s zombies were facing.

• We must be able to extend to ZPUCs, Zombie

Processed Unfinished Columbaria!

Exercise 1. Compute the sum of 1,000 num-

bers, the last 50 of which are still unknown.

Exercise 2. Compute the determinant of a

1, 000 × 1, 000 matrix in which 50 entries are not yet given.

Example 3. Same, for signatures of matrices / quadratic forms.

A quadratic form on a v.s. V over C is a quadratic Q : V → C,

or a sesquilinear Hermitian ⟨·, ·⟩ on V × V (so ⟨x, y⟩ = ⟨y, x⟩ and

Q(y) = ⟨y, y⟩), or given a basis ηi of V∗, a matrix A = (ai j) with

A = ĀT and Q =
∑

ai jη̄iη j. The signature σ of Q is σ+ − σ−,

where for some P, P̄T AP = diag(1,
σ+· · ·, 1,−1,

σ−· · ·,−1, 0, . . .).

A Partial Quadratic (PQ) on V is a quadratic Q defined only on

a subspace DQ ⊂ V . We add PQs with DQ1+Q2
≔ DQ1

∩ DQ2
.

Given a linear ψ : V → W and a PQ Q on W, there is an obvious

pullback ψ∗Q, a PQ on V .

Theorem 1 (with Jessica Liu). Given a linear φ : V →
W and a PQ Q on V , there is a unique pushforward PQ

φ∗Q on W such that for every PQ U on W,

σV(Q + φ∗U) = σker φ(Q|ker φ) + σW(U + φ∗Q).

Gist of the Proof.

U

A B

B̄T

row/col

ops

σ(Q|ker φ)
simul.

C̄T F = F̄T

C

. . . and the quadratic F ≕ φ∗Q is well-defined only on D ≔ ker C.
(more at ωεβ/icerm.)

U + F

0

±1
0

0

0

0 C̄T

C

0

0

. . .
±1

W
V

W

W

Knots and Tangles.

Why Tangles? • As common as knots!

• Faster computations!

• Conceptually clearer proofs of invariance

(and of skein relations).

• Often fun and consequential:

◦ The Alexander polynomial{ Zombian = det.

◦ Knot signatures{ Pushforwards of quadratic forms.

◦ The Jones Polynomial{ The Temperley-Lieb Algebra.

◦ Khovanov Homology{ “Unfinished complexes”, complexes

in a category.

◦ The Kontsevich Integral{ Drinfel’d Associators. · · ·

Acknowledgement. This work was partially supported by

NSERC grant RGPIN-2018-04350 and by the Chu Family Foun-

dation (NYC).
(

A B

C U

)

det(A)
−−−−−−→

(

I A−1B

C U

)

1−−−−−−→
(

I A−1B

0 U −CA−1B

)

,

so det

(

A B

C U

)

= det(A) det(U −CA−1B).

Roughly, det(A) is “det on ker”,

−CA−1B is “a pushforward of

(

A B

C U

)

”.

(what if ∄A−1?)

One more story is left to tell, of knot tabulation.
Two slides from R. Jason Parsley’s ωεβ/history:

Knot Tables

Brief History of (Prime) Knot Tabulation

Gauss knew and thought about knots – 1833 integral formula

for linking number. Before him, Vandermonde (1771) wrote a

seminal paper on topology & discussed knots.

Atomic model [Kelvin, late 1800’s]

Atoms are knotted vortices in the ether.

This theory, albeit vastly incorrect, led to the first serious work

in knot theory.

Tait (1876), a colleague of Kelvin – knots to 7 crossings

Kirkman (1885, British) – knot projections

Little (1885, Nebraska) – knots to 10 crossings

by 1900, Tait, Kirkman, Little had produced all ≤ 10

crossing knots and all 11 crossing alternating knots

J. Parsley Knot Tabulation

Knot Tables

Brief History of Knot Tabulation III

1 Conway (1964)

Knots to 11 crossings, links to 10 crossings; errors.

2 Rolfsen (1976) Knots to 10 crossings. 1 error.

3 Caudron (1978) – knots to 11 crossings correctly.

4 Doll/Hoste (1991) Oriented links to 10 crossings.

5 Cerf (1998) Oriented alt. links to 10 crossings.

6 Hoste/Thistlethwaite/Weeks (1998)

1,701,936 knots to 16 crossings; determined chirality

7 Flint/Rankin (2007)

98,517,495,461 alternating links to 23 crossings.

All of these are for prime knots only!!!

J. Parsley Knot Tabulation

There’s also Burton’s tabulation to 19 crossings ωεβ/Burton, and Khesin’s K250, arXiv:1705.10319.

Embarrassment 1 (personal). I don’t know how to reproduce

the Rolfsen table of knots! Many others can, yet I still take it on

faith, contradicting one of the tenets of our practice, “thou shalt

not use what thou canst not prove”.

It’s harder than it seems! Producing all knot diagrams is a mess,

identifying all available Reidemeister moves is a mess, and you

sometimes have to go up in crossing number before you can go

down again.

Embarrassment 2 (communal). There isn’t anywhere a tabu-

lation of tangles! When you want to test your new discoveries,

where do you go?

Dream. Conquer both embarrassments at once. Reproduce the

Rolfsen table, and extend it to tangles, using code of the highest

level of beauty. The algorithm should be so clear and simple that

anyone should be able to easily implement it in an afternoon wi-

thout messing with any technicalities.

=

The dreaded slide moves, which go

up in crossing number, are parame-

trized by tangles!

We don’t even need to lo-

ok at all knot diagrams!

R-moves

are tangle

equalities!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ottawa-2306/
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Other Passions. With Roland van der Veen, I use “so-

lvable approximation” and “Perturbed Gaussian Differe-

ntial Operators” to unveil simple, strong, fast to compu-

te, and topologically meaningful knot invariants near the

Alexander polynomial. (⊂ polymath!)

?

Theorem ([BG], conjectured [MM],

elucidated [Ro1]). Let Jd(K) be

the coloured Jones polynomial of K, in the d-dimensional

representation of sl2. Writing

(q1/2 − q−1/2)Jd(K)

qd/2 − q−d/2

∣

∣

∣

∣

∣

∣

q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients

give the inverse of the Alexander polynomial:
(

∑∞
m=0 amm(K)~m

)

· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)















1 +

∞
∑

k=1

(q − 1)kρk(K)(qd)

ω2k(K)(qd)















.

Melvin,

Morton,

Garoufalidis

Abstract. I’ll explain what “everything around” means: classical

and quantum m, ∆, S , tr, R, C, and θ, as well as P, Φ, J, D,

and more, and all of their compositions. What DoPeGDO means:

the category of Docile Perturbed Gaussian Differential Operators.

And what slǫ
2+

means: a solvable approximation of the semi-

simple Lie algebra sl2.

Knot theorists should rejoice because all this leads to very po-

werful and well-behaved poly-time-computable knot invariants.

Quantum algebraists should rejoice because it’s a realistic play-

ground for testing complicated equations and theories.

Cartan’s θ,
the

Dequantizator,
and more. . .

Conventions. 1. For a set A, let zA ≔ {zi}i∈A and let

ζA ≔ {z
∗
i
= ζi}i∈A.†1 2. Everything converges!

DoPeGDO ≔ The category with objects finite

sets†2 and mor(A→ B):
{

F = ω exp(Q + P)
}

⊂ Q~ζA, zB�

Where: • ω is a scalar.†3 • Q is a “small” qua-

dratic in ζA ∪ zB.†4 • P is a “docile perturba-

tion”: P =
∑

k≥1 ǫ
kP(k), where deg P(k) ≤ 2k+2.†5

• Compositions:†6

F�G = G◦F ≔
(

G|ζi→∂zi
F
)

zi=0
=
(

F |zi→∂ζi
G
)

ζi=0
.

Cool! (V∗)⊗Σ ⊗ V⊗S explodes; the ranks of qua-

dratics and bounded-degree polynomials grow

slowly!†7

Representation theory is over-rated!

DoPeGDO Footnotes. †1. Each variable has a “weight”∈ {0, 1, 2}, and

always wt zi + wt ζi = 2.

†2. Really, “weight-graded finite sets” A = A0 ⊔ A1 ⊔ A2.

†3. Really, a power series in the weight-0 variables†9.

†4. The weight of Q must be 2, so it decomposes as Q = Q20 +Q11. The

coefficients of Q20 are rational numbers while the coefficients of Q11

may be weight-0 power series†9.

†5. Setting wt ǫ = −2, the weight of P is ≤ 2 (so the powers of the

weight-0 variables are not constrained†9).

†6. There’s also an obvious product

mor(A1 → B1) ×mor(A2 → B2)→ mor(A1 ⊔ A2 → B1 ⊔ B2).

†7. That is, if the weight-0 variables are ignored. Otherwise more care

is needed yet the conclusion remains.

†8. Hom(U⊗Σ → U⊗S ){ mor({ηi, βi, τi, αi, ξi}i∈Σ → {yi, bi, ti, ai, xi}i∈S ),

where wt(ηi, ξi, yi, xi) = 1 and wt(βi, τi, αi; bi, ti, ai) =

(2, 2, 0; 0, 0, 2).

†9. For tangle invariants the weight-0 power series are always rational

functions in the exponentials of the weight-0 variables (for knots:

just one variable).

Our Algebras. Let slǫ
2+
≔ L〈y, b, a, x〉 subject to [a, x] = x,

[b, y] = −ǫy, [a, b] = 0, [a, y] = −y, [b, x] = ǫx, and [x, y] =

ǫa + b. So t ≔ ǫa − b is central and if ∃ǫ−1, slǫ
2+
/〈t〉 � sl2.

U is either CU = Û(slǫ
2+

) or QU = U~(slǫ
2+

) = A〈y, b, a, x〉 with

[a, x] = x, [b, y] = −ǫy, [a, b] = 0, [a, y] = −y, [b, x] = ǫx, and

xy − qyx = (1 − AB)/~, where q = ❡
~ǫ , A = ❡

−~ǫa, and B = ❡
−~b.

Set also T = A−1B = ❡~t.

The Quantum Leap. Also decree that in QU,

∆(y, b, a, x) = (y1 + B1y2, b1 + b2, a1 + a2, x1 + A1x2),

S (y, b, a, x) = (−B−1y,−b,−a,−A−1x),

and R =
∑

~ j+kykb j ⊗ a jxk/ j![k]q!.

Compositions (1).

Where • ω = ω1ω2 det(I − F2G1)−1.

• E = E1(I − F2G1)−1E2.

• F = F1 + E1F2(I −G1F2)−1ET
1

.

• G = G2 + ET
2

G1(I − F2G1)−1E2.

• P is computed using “connected Feyn-

man diagrams” or as the solution of a messy

PDE (yet we’re still in algebra!).

Mid-Talk Debts. •What is this good for in quantum algebra?

• In knot theory?

• How does the “inclusion” D : Hom(U⊗Σ → U⊗S ) {

DoPeGDO work?

• Proofs that everything around slǫ
2+

really is DoPeGDO.

• Relations with prior art.

• The rest of the “compositions” story.

Less Abstract

D

Thanks for inviting me to Da Nang!
ωεβ≔http://drorbn.net/v19/

More at ωεβ/talks

Dror Bar-Natan: Talks: DaNang-1905:

Everything around slǫ
2+

is DoPeGDO. So what?

m

—
ne

w
st
uff

—

—
al

ex
an

de
r
−
1 —

0

j

A
le

x
an

d
er

li
v
es

h
er

e

Continues Rozansky [Ro1,

Ro2, Ro3] and Overbay [Ov],

joint with van der Veen [BV].

m : U ⊗ U→U

tr : U→U/wx=xw

Φ∈CU⊗3

∆ : U→U ⊗ U

R∈QU ⊗ QU

J∈CU ⊗CU

S : U→U

C∈QU

ca mũ

†8

4D Metrized Lie Algebras

In mor(A→B), Q=
∑

i∈A, j∈B

Ei jζiz j+
1
2

∑

i, j∈A

Fi jζiζ j+
1
2

∑

i, j∈B

Gi jziz j

composition

�
One abstraction level

up from tangles!

{tangles} →

{ }

with compositions:

A B

E1

F1 G1

P1

ω1 B C

E2

F2 G2

P2

ω2 A C

E

F G

P

ω

greek latin

Q1 Q2 Q

us

algebras isomorphic
to sl2 + 1D

the Abelian
algebra

solvable
algebras

Vassiliev

slǫ
2+

Lin WangJones Tian

Gompf−Scharlemann−

Thompson

Piccirillo

Wirtinger

Blanchfield

van der OverbayRozansky
Veen

p = 1 − T s

diamondtraffic.com
image credits:

[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot

Polynomial, Proc. Amer. Math. Soc. 147 (2019) 377–397, arXiv:1708.04853.

[BV2] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Functions for

Universal Knot Invariants, arXiv:2109.02057.

[Dr] V. G. Drinfel’d, Quantum Groups, Proc. Int. Cong. Math., 798–820, Berkeley, 1986.

[Jo] V. F. R. Jones, Hecke Algebra Representations of Braid Groups and Link Polyno-

mials, Annals Math., 126 (1987) 335-388.

[La] R. J. Lawrence, Universal Link Invariants using Quantum Groups, ProcẊVII Int.
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Cars, Interchanges, Traffic Counters, and a Pretty Darned Good Knot Invariant
Dror Bar-Natan: Talks: Geneva-2206:

i+1 j+1j+1 i+1

1−T T 1 0 0 T−11 1−T−1

ωεβ/J

(n = 3)

T
δ

U

We seek strong, fast, homomorphic knot and tangle invariants.

Strong. Having a small “kernel”.

Fast. Computable even for large knots (best: poly time).

d1

Why care for “Homomorphic”? Theorem. A knot K is ribbon

iff there exists a 2n-component tangle T with skeleton as below

such that τ(T ) = K and where δ(T ) = U is the untangle:

Homomorphic. Extends to tan-

gles and behaves under tangle

operations; especially gluings

and doublings:

K

τ

Hear more at ωεβ/AKT.

ωεβ≔http://drorbn.net/j22/Thanks for inviting me to Geneva!

Abstract. Reporting on joint work with

Roland van der Veen, I’ll tell you some

stories about ρ1, an easy to define, strong,

fast to compute, homomorphic, and well-

connected knot invariant. ρ1 was first studied by Rozansky and

Overbay [Ro1, Ro2, Ro3, Ov], it has far-reaching generalizations,

it is dominated by the coloured Jones polynomial, and I wish I un-

derstood it. Common misconception. “Dominated”; “lesser”.

Jones:

Formulas stay;

interpretations change with time.

Formulas. Draw an n-crossing knot K as on the ri-

ght: all crossings face up, and the edges are marked

with a running index k ∈ {1, . . . , 2n + 1} and with

rotation numbers ϕk. Let A be the (2n+1)× (2n+1)

matrix constructed by starting with the identity ma-

trix I, and adding a 2 × 2 block for each crossing:

ij

s = −1

Let G = (gαβ) = A−1. For the trefoil example, it is:

A =





























































1 −T 0 0 T − 1 0 0

0 1 −1 0 0 0 0

0 0 1 −T 0 0 T − 1

0 0 0 1 −1 0 0

0 0 T − 1 0 1 −T 0

0 0 0 0 0 1 −1

0 0 0 0 0 0 1





























































,

G =

































































1 T 1 T 1 T 1

0 1 1
T 2−T+1

T
T 2−T+1

T
T 2−T+1

T 2

T 2−T+1
1

0 0 1
T 2−T+1

T
T 2−T+1

T
T 2−T+1

T 2

T 2−T+1
1

0 0 1−T
T 2−T+1

1
T 2−T+1

1
T 2−T+1

T
T 2−T+1

1

0 0 1−T
T 2−T+1

−
(T−1)T

T 2−T+1
1

T 2−T+1
T

T 2−T+1
1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

































































.

Note. The Alexander polynomial ∆ is given by

∆ = T (−ϕ−w)/2 det(A), with ϕ =
∑

k

ϕk, w=
∑

c

s.

Classical Topologists: This is boring. Yawn.

A col i+1 col j+1

row i −T s T s − 1

row j 0 −1

c :

i j

s = +1

4

ϕ
4
=
−

1

∗ In algebra x ∼ 0 if for every y in the ideal generated by x, 1 − y is invertible.

Formulas, continued. Finally, set

R1(c) ≔ s
(

g ji

(

g j+1, j + g j, j+1 − gi j

)

− gii

(

g j, j+1 − 1
)

− 1/2
)

ρ1 ≔ ∆
2















∑

c

R1(c) −
∑

k

ϕk (gkk − 1/2)















.

In our example ρ1 = −T 2 + 2T − 2 + 2T−1 − T−2.

Theorem. ρ1 is a knot invariant. Proof: later.

Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic

Counters. Cars always drive forw-

ard. When a car crosses over a bridge

it goes through with (algebraic) pro-

bability T s ∼ 1, but falls off with probability 1 − T s ∼ 0∗. See

also [Jo, LTW].

Accompanies ωεβ/APAI

“The Green Function”

Jessica, Nancy, Tamara, Zsuzsi, & Dror in PDS4

van der Veen

Le, Murakami

Dancso Hogan Liu Scherich

Tangles in a Pole Dance Studio: A Reading of Massuyeau, Alekseev, and Naef
Dror Bar-Natan: Talks: LesDiablerets-2208:

Example 2. With γ1, γ2 ∈ π (or π̄) and with

λ0, λ1 as on the right, we get the “double bra-

cket” η2 : π ⊗ π→ π ⊗ π (or π̄ ⊗ π̄→ π̄ ⊗ π̄).

Example 3. With γ ∈ π̄ and

λ0(γ) its ascending realization

as a bottom tangle and λ1(γ) its

descending realization as a bottom tangle, we get

η3 : π̄→ π̄⊗ |π̄|. Closing the first component and

anti-symmetrizing, this is the Turaev cobracket. descendingascending

ascending descending

Example 4 [Ma]. With γ ∈ π̄ and λ0(γ) its

ascending outer double and λ1(γ) its ascen-

ding inner double we get η4 : π̄ → π̄ ⊗ π̄. A-

fter some massaging, it too becomes the Tu-

raev cobracket.

Nancy

Thanks for inviting me to Les Diablerets! ωεβ≔http://drorbn.net/ld22/

ωεβ/g22

Preliminary Definitions. Fix p ∈ N and F = Q/C.

Let Dp ≔ D2\(p pts), and let the Pole Dance Studio

be PDSp ≔ Dp × I. PDS3

Abstract. I will report on joint work

with Zsuzsanna Dancso, Tamara

Hogan, Jessica Liu, and Nancy Sche-

rich. Little of what we do is original,

and much of it is simply a reading of Massuyeau [Ma] and Alek-

seev and Naef [AN1].

We study the pole-strand and

strand-strand double filtration on

the space of tangles in a pole

dance studio (a punctured disk

cross an interval), the correspon-

ding homomorphic expansions,

and a strand-only HOMFLY-PT

relation. When the strands are transparent or nearly transparent

to each other we recover and perhaps simplify substantial parts

of the work of the aforementioned authors on expansions for the

Goldman-Turaev Lie bi-algebra. =⇒
Expansions W : FG⟨Xi⟩ → FA⟨xi⟩:

Magnus: Xi 7→ 1 + xi, X−1
i
7→ 1 − xi + x2

i
− . . .

Exponential: X±1
i
7→ ❡

±xi

ωεβ/v19

Definitions. Let π ≔ FG⟨X1, . . . , Xp⟩ be the free group (of defor-

mation classes of based curves in Dp), π̄ be the framed free group

(deformation classes of based immersed curves), |π| and |π̄| deno-

te F-linear combinations of cyclic words (|xiw| = |wxi|, unbased

curves), A ≔ FA⟨x1, . . . , xp⟩ be the free associative algebra, and

let |A| ≔ A/(xiw = wxi) denote cyclic algebra words.

Theorem 1 (Goldman, Turaev, Massuyeau, Alekseev, Kawazu-

mi, Kuno, Naef). |π̄| and |A| are Lie bialgebras, and there is a

“homomorphic expansion” W : |π̄| → |A|: a morphism of Lie bial-

gebras with W(|Xi|) = 1 + |xi| + . . ..

Further Definitions. • K = K0 = K
0
0
= K(S ) ≔

F⟨framed tangles in PDSp⟩.

• K s
t ≔(the image via ✥→ ✦ −✧ of tangles in PDSp

that have t double points, of which s are strand-strand).

E.g.,

• K /s ≔ K/K s. Most important, K /1(⃝) = |π̄|, and there is

P : K(⃝)→ |π̄|.

• A ≔
∏

Kt/Kt+1, As
≔

∏

K s
t /K

s
t+1
⊂ A, A/s ≔ A/As.

K2
5
(⃝) = /. ✥→ ✦ −✧

Key 1. W : |π̄| → |A| is Z
/1

H
: K

/1

H
(⃝)→ A

/1

H
(⃝).

Key 2 (Schematic). Suppose λ0, λ1 : |π̄| → K(⃝) are two ways

of lifting plane curves into knots in PDSp (namely, P ◦ λi = I).

Then for γ ∈ |π̄|, Lemma 1. “Division by ℏ” is well-defined.

η(γ) ≔ (λ0(γ) − λ1(γ))/ℏ ∈ K
/1

H
(⃝⃝) = |π̄| ⊗ |π̄|

and we get an operation η on plane curves. If Kontsevich likes λ0

and λ1 (namely if there are λa
i

with Z/2(λi(γ)) = λ
a
i
(W(γ))), then

η will have a compatible algebraic companion ηa:

ηa(α) ≔ (λa
0(α) − λa

1(α))/ℏ ∈ A
/1

H
(⃝⃝) = |A| ⊗ |A|.

For indeed, in A
/2

H
we have ℏW(η(γ)) = ℏZ(η(γ)) = Z(λ0(γ)) −

Z(λ1(γ)) = λa
0
(W(γ)) − λa

1
(W(γ)) = ℏηa(W(γ)).

Fact 1. The Kontsevich Integral is an “expansion” Z : K → A,

compatible with several noteworthy structures.

Fact 2 (Le-Murakami, [LM1]). Z satisfies the strand-strand

HOMFLY-PT relations: It descends to ZH : KH → AH , where

KH ≔ K

/(

✦ −✧ = (❡ℏ/2 − ❡−ℏ/2) ·❛

)

AH ≔ A /( = ℏ or = ℏ )

and deg ℏ = (1, 1).

Proof of Fact 2. Z(✦) − Z(✧) = P ·
(

❡
❭/2 − ❡−❭/2

)

= P ·
(

❡
ℏP/2 − ❡−ℏP/2

)

=
(

❡
ℏ/2 − ❡−ℏ/2

)

❛. □
The rest is essentially Exercises: 1. Lemma 1? 2. A?

3. Fact 2? 4. A/1? Especially, A/1(⃝) � |A|! 5. Explain

why Kontsevich likes our λ’s. 6. Figure out ηa
i
, i = 1, . . . , 4.

Example 1. With γ1, γ2 ∈

|π| (or |π̄|) set λ0(γ1, γ2) =

γ̃1 · γ̃2 and λ1(γ1, γ2) = γ̃2 ·

γ̃1 where γ̃i are arbitrary lifts of γi. Then η1 is the Gol-

dman bracket! Note that here λ0 and λ1 are not well-

defined, yet η1 is.

−

D·Z

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/
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http://drorbn.net/cms21

Kashaev’s Signature Conjecture

CMS Winter 2021 Meeting, December 4, 2021

Dror Bar-Natan with Sina Abbasi

Agenda. Show and tell with signatures.

Abstract. I will display side by side two nearly identical computer programs whose
inputs are knots and whose outputs seem to always be the same. I’ll then admit,
very reluctantly, that I don’t know how to prove that these outputs are always the
same. One program I wrote mostly in Bedlewo, Poland, in the summer of 2003 and
as of recently I understand why it computes the Levine-Tristram signature of a
knot. The other is based on the 2018 preprint On Symmetric Matrices Associated

with Oriented Link Diagrams by Rinat Kashaev (arXiv:1801.04632), where he
conjectures that a certain simple algorithm also computes that same signature.

If you can, please turn your video on! (And mic, whenever needed).

http://drorbn.net/cms21

These slides and all the code within are available at http://drorbn.net/cms21.

(I’ll post the video there too)

http://drorbn.net/cms21

Bed[K_, ω_] :=

Module{t, r, XingsByArmpits, bends, faces, p, A, is},

t = 1 - ω; r = t + t;
XingsByArmpits =

List @@ PD[K] /. x : X[i_, j_, k_, l_] 
If[PositiveQ[x], X+[-i, j, k, -l], X-[-j, k, l, -i]];

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_]  pa,-d pb,-a pc,-b pd,-c;

faces = bends //. px__,y_ py_,z__  px,y,z;

A = Table[0, Length@faces, Length@faces];

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

-r -t 2 t t
-t 0 t 0

2 t t -r -t
t 0 -t 0

,

r -t -2 t t
-t 0 t 0

-2 t t r -t
t 0 -t 0

,
{x, XingsByArmpits};

MatrixSignature[A] ;

Kas[K_, ω_] :=

Module{u, v, XingsByArmpits, bends, faces, p, A, is},

u = Reω 1/2; v = Re[ω];

XingsByArmpits =

List @@ PD[K] /. x : X[i_, j_, k_, l_] 
If[PositiveQ[x], X+[-i, j, k, -l], X-[-j, k, l, -i]];

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_]  pa,-d pb,-a pc,-b pd,-c;

faces = bends //. px__,y_ py_,z__  px,y,z;

A = Table[0, Length@faces, Length@faces];

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

,
{x, XingsByArmpits};

(MatrixSignature[A] - Writhe[K])/2 ;

http://drorbn.net/cms21

Why am I showing you code ?

▶ I love code — it’s fun!

▶ Believe it or not, it is more expressive than math-talk (though I’ll do the
math-talk as well, to confirm with prevailing norms).

▶ It is directly verifiable. Once it is up and running, you’ll never ask yourself “did
he misplace a sign somewhere”?

http://drorbn.net/cms21

Bed[K_, ω_] :=

Module{t, r, XingsByArmpits, bends, faces, p, A, is},

t = 1 - ω; r = t + t;
XingsByArmpits =

List @@ PD[K] /. x : X[i_, j_, k_, l_] 
If[PositiveQ[x], X+[-i, j, k, -l], X-[-j, k, l, -i]];

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_]  pa,-d pb,-a pc,-b pd,-c;

faces = bends //. px__,y_ py_,z__  px,y,z;

A = Table[0, Length@faces, Length@faces];

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

-r -t 2 t t
-t 0 t 0

2 t t -r -t
t 0 -t 0

,

r -t -2 t t
-t 0 t 0

-2 t t r -t
t 0 -t 0

,
{x, XingsByArmpits};

MatrixSignature[A] ;

Kas[K_, ω_] :=

Module{u, v, XingsByArmpits, bends, faces, p, A, is},

u = Reω 1/2; v = Re[ω];

XingsByArmpits =

List @@ PD[K] /. x : X[i_, j_, k_, l_] 
If[PositiveQ[x], X+[-i, j, k, -l], X-[-j, k, l, -i]];

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_]  pa,-d pb,-a pc,-b pd,-c;

faces = bends //. px__,y_ py_,z__  px,y,z;

A = Table[0, Length@faces, Length@faces];

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

,
{x, XingsByArmpits};

(MatrixSignature[A] - Writhe[K])/2 ;

http://drorbn.net/cms21

Verification.

Once[<< KnotTheory`]

Loading KnotTheory` version of February 2, 2020, 10:53:45.2097.

Read more at http://katlas.org/wiki/KnotTheory.

MatrixSignature[A_] :=

TotalSignSelectEigenvalues[A], Abs[#] > 10-12 &;
Writhe[K_] := Sum[If[PositiveQ[x], 1, -1], {x, List @@ PD@K}];

Sumω =  RandomReal[{0,2 π}]
; Bed[K, ω]  Kas[K, ω], {10},

{K, AllKnots[{3, 10}]}
KnotTheory: Loading precomputed data in PD4Knots`.

2490 True

http://drorbn.net/cms21

Label everything!

1

2

3

45

6

7

8

9

10

11
12

13

14

15

16

PD[X [10, 1, 11, 2],X [2, 11, 3, 12], . . .]

1-1

2
-2

3

-3

-4

5

-5

6

-6

7
-7

-8

9
-9

10

-10

11

-11

-12

13

-13

15
-15

14

-16

168

124

-14

1-8

5

13

3

2

-11

12-13

-5

14

6

-15 9

7

-7

-1

8

-2

-12

-4

-16

16

-6

4 -3

15 -14 -10 11

10-9
edgeside

armpit

a bend

p
−6,−10

{X
−
[−1, 11, 2,−10],X

−
[−11, 3, 12,−2], . . .}

http://drorbn.net/cms21

Lets run our code line by line. . .

PD[82] = PD[X[10, 1, 11, 2],

X[2, 11, 3, 12], X[12, 3, 13, 4],

X[4, 13, 5, 14], X[14, 5, 15, 6],

X[8, 16, 9, 15], X[16, 8, 1, 7],

X[6, 9, 7, 10]];

K = 82;

1

2

3

45

6

7

8

9

10

11
12

13

14

15

16

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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XingsByArmpits =

List @@ PD[K] /.

x : X[i_, j_, k_, l_] 
If[PositiveQ[x], X+[-i, j, k, -l],

X-[-j, k, l, -i]]

{X-[-1, 11, 2, -10], X-[-11, 3, 12, -2],

X-[-3, 13, 4, -12], X-[-13, 5, 14, -4],

X-[-5, 15, 6, -14], X+[-8, 16, 9, -15],

X+[-16, 8, 1, -7], X-[-9, 7, 10, -6]}

1-1

2
-2

3

-3

-4

5

-5

6

-6

7
-7

-8

9
-9

10

-10

11

-11

-12

13

-13

15
-15

14

-16

168

124

-14

1-8

5

13

3

2

-11

12-13

-5

14

6

-15 9

7

-7

-1

8

-2

-12

-4

-16

16

-6

4 -3

15 -14 -10 11

10-9
edgeside

armpit

a bend

p
−6,−10

http://drorbn.net/cms21

bends = Times @@ XingsByArmpits /.

_[X][a_, b_, c_, d_] 
pa,-d pb,-a pc,-b pd,-c

p-16,7 p-15,-9 p-14,-6 p-13,4 p-12,-4 p-11,2

p-10,-2 p-9,6 p-8,15 p-7,-1 p-6,-10 p-5,14

p-4,-14 p-3,12 p-2,-12 p-1,10 p1,-8 p2,-11

p3,11 p4,-13 p5,13 p6,-15 p7,9 p8,16 p9,-16

p10,-7 p11,1 p12,-3 p13,3 p14,-5 p15,5 p16,8

faces = bends //. px__,y_ py_,z__  px,y,z

p-13,4,-13 p-11,2,-11 p-5,14,-5 p-3,12,-3

p8,16,8 p6,-15,-9,6 p9,-16,7,9 p10,-7,-1,10

p-10,-2,-12,-4,-14,-6,-10 p1,-8,15,5,13,3,11,1

1-1

2
-2

3

-3

-4

5

-5

6

-6

7
-7

-8

9
-9

10

-10

11

-11

-12

13

-13

15
-15

14

-16

168

124

-14

1-8

5

13

3

2

-11

12-13

-5

14

6

-15 9

7

-7

-1

8

-2

-12

-4

-16

16

-6

4 -3

15 -14 -10 11

10-9
edgeside

armpit

a bend

p
−6,−10
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A = Table[0, Length@faces, Length@faces];

A // MatrixForm

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

http://drorbn.net/cms21

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

,
{x, XingsByArmpits};

http://drorbn.net/cms21

x = XingsByArmpits〚1〛
X-[-1, 11, 2, -10]

faces

p-13,4,-13 p-11,2,-11 p-5,14,-5 p-3,12,-3 p8,16,8 p6,-15,-9,6

p9,-16,7,9 p10,-7,-1,10 p-10,-2,-12,-4,-14,-6,-10 p1,-8,15,5,13,3,11,1

is = Position[faces, #]〚1, 1〛 & /@ List @@ x

{8, 10, 2, 9}

http://drorbn.net/cms21

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

;
A // MatrixForm

0 0 0 0 0 0 0 0 0 0

0 -v 0 0 0 0 0 -1 -u -u

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 -v -u -u

0 -u 0 0 0 0 0 -u -1 -1

0 -u 0 0 0 0 0 -u -1 -1

Recall, is = {8, 10, 2, 9}

http://drorbn.net/cms21

Dois = Position[faces, #]〚1, 1〛 & /@ List @@ x;

A〚is, is〛 += IfHead[x] === X+,

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

, -

v u 1 u

u 1 u 1

1 u v u

u 1 u 1

,
{x, Rest@XingsByArmpits}

http://drorbn.net/cms21

A // MatrixForm

-2 v 0 -1 -1 0 0 0 0 -2 u -2 u

0 -2 v 0 -1 0 0 0 -1 -2 u -2 u

-1 0 -2 v 0 0 -1 0 0 -2 u -2 u

-1 -1 0 -2 v 0 0 0 0 -2 u -2 u

0 0 0 0 2 1 2 u 1 0 2 u

0 0 -1 0 1 1 - 2 v 0 -1 -2 u 0

0 0 0 0 2 u 0 -1 + 2 v 0 -1 2

0 -1 0 0 1 -1 0 1 - 2 v -2 u 0

-2 u -2 u -2 u -2 u 0 -2 u -1 -2 u -6 -5

-2 u -2 u -2 u -2 u 2 u 0 2 0 -5 -5 + 2 v

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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Plotω =  t; u = Reω1/2; v = Re[ω];
(MatrixSignature[A] - Writhe[K])/2,

{t, 0, 2 π}

1 2 3 4 5 6

1

2

3

4

http://drorbn.net/cms21

PlotBedKnot[8, 2],  t, {t, 0, 2 π}

1 2 3 4 5 6

1

2

3

4

http://drorbn.net/cms21

Kashaev for Mathematicians.
For a knot K and a complex unit ω set u = ℜ(ω1/2), v = ℜ(ω), make an F × F

matrix A with contributions

v

1

v

1

u

1

u

u

1

u

−v

−1

−v

−1

−u

−1

−u

−u

−1

−u

and output 1

2
(σ(A)− w(K )).

http://drorbn.net/cms21

Bedlewo for Mathematicians.
For a knot K and a complex unit ω set t = 1− ω, r = 2ℜ(t), make an F × F

matrix A with contributions

−r

−t

0

t
∗

2t

0

−r

−t
∗

0

t
∗

r

−t
∗

0

t
∗

r

−t

−2t
∗

0

t
∗

0

(conjugate if going against the flow) and output σ(A).

http://drorbn.net/cms21

Why are they equal?

I dunno, yet note that

▶ Kashaev is over the Reals, Bedlewo is over the Complex numbers.

▶ There’s a factor of 2 between them, and a shift.

. . . so it’s not merely a matrix manipulation.

http://drorbn.net/cms21

Theorem. The Bedlewo program com-
putes the Levine-Tristram signature of K
at ω.

(Easy) Proof. Levine and Tristram tell
us to look at σ((1− ω)L+ (1− ω

∗)LT ),
where L is the linking matrix for a Seifert
surface S for K : Lij = lk(γi , γ

+

i ) where
γi run over a basis of H1(S) and γ

+

i

is the pushout of γi . But signatures
don’t change if you run over and over-
determined basis, and the faces make
such and over-determined basis whose
linking numbers are controlled by the
crossings. The rest is details. Art by Emily Redelmeier

http://drorbn.net/cms21

Thank You!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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1 2

K

Ù On a chat window here I saw a

comment “Alexander is the quantum

gl(1|1) invariant”. I have an opinion

about this, and I’d like to share it. First,

some stories.

I left the wonderful subject of

Categorification nearly 15 years ago.

It got crowded, lots of very smart people

had things to say, and I feared I will have

nothing to add. Also, clearly the next

step was to categorify all other “quantum

invariants”. Except it was not clear what

“categorify” means. Worse, I felt that

I (perhaps “we all”) didn’t understand

“quantum invariants” well enough to try

to categorify them, whatever that might

mean.

I still feel that way! I learned a lot since

2006, yet I’m still not comfortable with

quantum algebra, quantum groups, and

quantum invariants. I still don’t feel that

I know what God had in mind when She

created this topic.

Yet I’m not here to rant about my

philosophical quandaries, but only about

things that I learned about the Alexander

polynomial after 2006.

Yes, the Alexander polynomial fits

within the Dogma, “one invariant for

every Lie algebra and representation”

(it’s gl(1|1), I hear). But it’s better to

think of it as a quantum invariant arising

by other means, outside the Dogma.

Alexander comes from (or in)

practically any non-Abelian Lie algebra.

Foremost from the not-even-semi-

simple 2D “ax + b” algebra. You get

a polynomially-sized extension to tangles

using some lovely formulas (can you

categorify them?). It generalizes to

higher dimensions and it has an organized

family of siblings. (There are some

questions too, beyond categorification).

I note the spectacular existing

categorification of Alexander by Ozsváth

and Szabó. The theorems are proven and

a lot they say, the programs run and fast

they run. Yet if that’s where the story

ends, She has abandoned us. Or at least

abandoned me: a simpleton will never be

able to catch up.

If you care only about categorification,

the take-home from my talk will be a

challenge: Categorify what I believe is

the best Alexander invariant for tangles.

The Yang-Baxter Technique. Given an algebra U (typically some

Û(g) or Ûq(g)) and suitable elements R, C,

R=
∑

ai ⊗ bi ∈ U ⊗ U with R−1=
∑

āi ⊗ b̄i and C,C−1 ∈ U,

form Z(K) =
∑

i, j,k

aiC
−1b̄kā jbi ⊗ b̄ jāk.

Problem. Extract information from Z.

The Dogma. Use representation theory. In principle finite, but slow.

Example 1. Let a ≔ L〈a, x〉/([a, x] = x), b ≔ a⋆ = 〈b, y〉, and

g ≔ b ⋊ a = b ⊕ a with [a, x] = x, [a, y] = −y, [b, ·] = 0, and

[x, y] = b and with deg(y, b, a, x) = (1, 1, 0, 0). Let U = Û(g) and

R ≔ ❡
b⊗a+y⊗x ∈ U ⊗ U or better Ri j ≔ ❡

bia j+yi x j ∈ Ui ⊗ U j, and Ci = ❡
−bi/2.

Theorem 1. With “scalars”≔power series in {bi} which are rational functions in {bi} and

{Bi ≔ ❡
bi},

Z(K) = Oybax

(

ω−1
❡

li jbia j+qi jyi x j(1+ǫP1 + ǫ
2P2 + . . .)

)

Example 2. Let h ≔ A〈p, x〉/([p, x] = 1) be

the Heisenberg algebra, with Ci = ❡
t/2 and

Ri j = ❡
t/2
❡

t(pi−p j)x j . I just told you the whole Alexander

story! Everything else is details.

Claim. Ri j = Opx

(

❡
(❡t−1)(pi−p j)x j

)

.

Theorem 3. Full evaluation via

(

✦i j, ✧j i

)

→

1 xi x j

pi 0 T±1 − 1

p j 0 1 − T±1

(1)�

K1 ⊔ K2 →

ω1ω2 X1 X2

P1 A1 0

P2 0 A2

(2)�

ω xi x j · · ·

pi α β θ

p j γ δ ǫ
... φ ψ Ξ

hm
i j

k

−→ (3)

(1 + γ)ω xk · · ·

pk 1 + β −
(1−α)(1−δ)

1+γ
θ +

(1−α)ǫ

1+γ
... ψ +

(1−δ)φ

1+γ
Ξ −

φǫ

1+γ

“Γ-calculus” relates via A↔ I−AT and has

slightly simpler formulas: ω→ (1 − β)ω,




















α β θ

γ δ ǫ

φ ψ Ξ





















→













γ + αδ
1−β

ǫ + δθ
1−β

φ +
αψ

1−β
Ξ +

ψθ

1−β













(v-)Tangles.

Why Should You Categorify This? The

simplest and fastest Alexander for tangles,

easily generalizes to the multi-variable

case, generalizes to v-tangles and w-

tangles, generalizes to other Lie algebras.

In fact, it’s in almost any Lie algebra,

and you don’t even need to know what

is gl(1|1)! But you’ll have to deal with

denominators and/or divisions!

Packaging. Write Opx

(

ω−1
❡

qi j pi x j

)

as

Ep1,...,x1,...[ω,Q]↔

ω x1 x2 · · ·

p1 q11 q12 · · ·

p2 q21 q22 · · ·
...

...
...

. . .

The “First Tangle”. Z(K) =

E12

[

2T−1
T
,

(T−1)(p1−p2)(T x1−x2)

2T−1

]

=

2−T−1 x1 x2

p1
T (T−1)

2T−1
1−T

2T−1

p2
T (1−T )

2T−1
T−1

2T−1

Theorem 2. Z(K) = Opx

(

ω−1
❡

qi j pi x j

)

where

ω and the qi j are rational functions in T = ❡t.

In fact ω and ωqi j are Laurent polynomials

(categorify us!). When K is a long knot, ω

is the Alexander polynomial.

Note. Example 1 ! Example 2 via g ֒→ h(t)

via (y, b, a, x) 7→ (−tp, t, px, x).

ωεβ≔http://drorbn.net/cat20/

Thanks for inviting me to speak in my basement!

The Alexander Polynomial is a Quantum Invariant in a Different Way
Dror Bar-Natan: Talks: LearningSeminarOnCategorification-2006:

a tangle w/o
closed components

the “i over j”
linking numbers

“normal ordering”
at ybax order

QL

,

⊔
K1K2K1 K2

have a hidden parameter ǫ!

a docile perturbation for other
Lie algebras; semisimple algebras

“stitching”

i j

K
m

i j

k

k

K

categorify us!
scalars

van der Veen
With Roland

(integers)

the Alexander poly ∆(T )
a scalar; if K is a long knot,

categorify me!

Continues
Lev Rozansky

Generated by {✦,✧}!

There’s also strand doubling and reversal. . .

Gentle’s Agreement.

Everything converges!

1 2

K

C−1

ai bi

ā j

b̄ j

āk b̄k

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/
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The PBW Principle Lots of algebras are isomorphic as vector

spaces to polynomial algebras. So we want to understand arbi-

trary linear maps between polynomial algebras.

Convention. For a finite set A, let zA ≔ {zi}i∈A and let

ζA ≔ {z
∗
i
= ζi}i∈A. (p, x)∗ = (π, ξ)

The Generating Series G : Hom(Q[zA]→Q[zB])→ Q~ζA, zB�.

Claim. L ∈ Hom(Q[zA]→ Q[zB]) ∼−→
G
Q[zB]~ζA� ∋ L via

G(L) ≔
∑

n∈NA

ζn
A

n!
L(zn

A) = L
(

❡

∑

a∈A ζaza

)

= L = Lgreek latin,

G−1(L)(p) =
(

p|za→∂ζa
L
)

ζa=0
for p ∈ Q[zA].

Claim. If L ∈ Hom(Q[zA] → Q[zB]), M ∈ Hom(Q[zB] →

Q[zC]), then G(L�M) =
(

G(L)|zb→∂ζb
G(M)

)

ζb=0
.

Examples. • G(id : Q[p, x]→ Q[p, x]) = ❡πp+ξx.

• Consider Ri j ∈ (hi ⊗ h j)~t� � Hom
(

Q[]→ Q[pi, xi, p j, x j]
)

~t�.

Then G(Ri j) = ❡
(❡t−1)(pi−p j)x j = ❡(T−1)(pi−p j)x j .

Heisenberg Algebras. Let h = A〈p, x〉/([p, x] = 1), let

Oi : Q[pi, xi]→ hi is the “p before x” PBW normal ordering map

and let hm
i j

k
be the composition

Q[pi, xi, p j, x j]
Oi⊗O j

−−−−−→ hi ⊗ h j

m
i j

k
−−−−−→ hk

O−1
k

−−−−−→ Q[pk, xk].

Then G(hm
i j

k
) = ❡−ξiπ j+(πi+π j)pk+(ξi+ξ j)xk .

Proof. Recall the “Weyl CCR” ❡ξx❡πp = ❡−ξπ❡πp
❡
ξx, and find

G(hm
i j

k
) = ❡πi pi+ξi xi+π j p j+ξ j x j�Oi ⊗ O j�m

i j

k
�O−1

k

= ❡πi pi
❡
ξi xi

❡
π j p j

❡
ξ j x j�m

i j

k
�O−1

k = ❡
πi pk

❡
ξi xk

❡
π j pk

❡
ξ j xk�O−1

k

= ❡−ξiπ j
❡

(πi+π j)pk
❡

(ξi+ξ j)xk�O−1
k = ❡

−ξiπ j+(πi+π j)pk+(ξi+ξ j)xk .

GDO≔ The category with objects finite sets and

mor(A→ B) =
{

L = ω❡Q
}

⊂ Q~ζA, zB�,

where: • ω is a scalar. • Q is a “small” quadratic in ζA ∪ zB.

• Compositions: L�M ≔
(

L|zi→∂ζi
M
)

ζi=0
.

R. Feynman

Compositions. In mor(A→B),

Q =
∑

i∈A, j∈B

Ei jζiz j +
1

2

∑

i, j∈A

Fi jζiζ j +
1

2

∑

i, j∈B

Gi jziz j,

and so (remember, ex = 1 + x + xx/2 + xxx/6 + . . .)

CA

E

ω

Q

greek latin

F G

BA ω1

Q1

greek latin

E1

� =

CB

E2

ω2

Q2

greek latin

F1 G1 F2 G2

E1E2 + E1F2G1E2

+E1F2G1F2G1E2

+ . . .

=
∞
∑

r=0

E1(F2G1)rE2

where • E = E1(I−F2G1)−1E2 • F = F1 + E1F2(I −G1F2)−1ET
1

• G = G2 + ET
2

G1(I − F2G1)−1E2 • ω = ω1ω2 det(I − F2G1)−1/2

Proof of Claim in Example 2. Let Φ1 ≔ ❡
t(pi−p j)x j and

Φ2 ≔ Op j x j

(

❡
(❡t−1)(pi−p j)x j

)

≕ O(Ψ). We show that Φ1 = Φ2 in

(hi⊗h j)~t� by showing that both solve the ODE ∂tΦ = (pi−p j)x jΦ

with Φ|t=0 = 1. For Φ1 this is trivial. Φ2|t=0 = 1 is trivial, and

∂tΦ2 = O(∂tΨ) = O(❡t(pi − p j)x jΨ)

(pi−p j)x jΦ2 = (pi−p j)x jO(Ψ) = (pi−p j)O(x jΨ − ∂p j
Ψ)

= O
(

(pi−p j)(x jΨ + (❡t − 1)x jΨ)
)

= O(❡t(pi−p j)x jΨ) �

Implementation. Without, don’t trust!

CF = ExpandNumerator@*ExpandDenominator@*PowerExpand@*Factor;A1_→B1_[ω1_, Q1_] A2_→B2_[ω2_, Q2_] ^:= A1⋃A2→B1⋃B2[ω1 ω2, Q1 + Q2]

(A1_→B1_[ω1_, Q1_] // A2_→B2_[ω2_, Q2_]) /; (B1* === A2) :=

Module{i, j, E1, F1, G1, E2, F2, G2, I, M = Table},

I = IdentityMatrix@Length@B1;

E1 = M[∂i,jQ1, {i, A1}, {j, B1}]; E2 = M[∂i,jQ2, {i, A2}, {j, B2}];

F1 = M[∂i,jQ1, {i, A1}, {j, A1}]; F2 = M[∂i,jQ2, {i, A2}, {j, A2}];

G1 = M[∂i,jQ1, {i, B1}, {j, B1}]; G2 = M[∂i,jQ2, {i, B2}, {j, B2}];A1→B2CFω1 ω2 Det[I - F2.G1]1/2, CF@Plus
If[A1 === {} ∨ B2 === {}, 0, A1.E1.Inverse[I - F2.G1].E2.B2],

IfA1 === {}, 0,
1

2
A1.F1 + E1.F2.Inverse[I - G1.F2].E1.A1,

IfB2 === {}, 0,
1

2
B2.G2 + E2.G1.Inverse[I - F2.G1].E2.B2

A_∖B_ := Complement[A, B];

(A1_→B1_[ω1_, Q1_] // A2_→B2_[ω2_, Q2_]) /; (B1* =!= A2) :=A1⋃A2B1*→B1⋃A2*[ω1, Q1 + Sum[ζ* ζ, {ζ, A2∖B1*}]] //B1*⋃A2→B2⋃B1A2*[ω2, Q2 + Sum[z* z, {z, B1∖A2*}]]
{p*, x*, π*, ξ*} = {π, ξ, p, x}; (u_i_)

* := (u*)i;

l_List* := #* & /@ l;

Ri_,j_ := {}→pi,xi,pj,xjT-1/2, (1 - T) pj xj + (T - 1) pi xj;
Ri_,j_ := {}→pi,xi,pj,xjT1/2, 1 - T-1 pj xj + T-1 - 1 pi xj;
Ci_ := {}→{pi,xi}T-1/2, 0;
Ci_ := {}→{pi,xi}T1/2, 0;
hmi_,j_→k_ := πi,ξi,πj,ξj→{pk,xk}[1, -ξi πj + (πi + πj) pk + (ξi + ξj) xk]{}→vs_[ωi_, Q_] := Module[{ps, xs, M},

ps = Cases[vs, p_]; xs = Cases[vs, x_];

M = Table[ωi, 1 + Length@ps, 1 + Length@xs];

M〚2 ;;, 2 ;;〛 = Table[CF[∂i,jQ], {i, ps}, {j, xs}];

M〚2 ;;, 1〛 = ps; M〚1, 2 ;;〛 = xs;

MatrixForm[M]]

=

1 2

3 1

2 3

65

4

4 5

6

Proof of Reidemeister 3.
(R1,2 R4,3 R5,6 // hm1,4→1 hm2,5→2 hm3,6→3) ==

(R2,3 R1,6 R4,5 // hm1,4→1 hm2,5→2 hm3,6→3)
True �

The “First Tangle”.

Factor /@z = R1,6 C3 R7,4 R5,2 // hm1,3→1 // hm1,4→1 // hm1,5→1 // hm1,6→1 // hm2,7→2
{}→{p1,p2,x1,x2}-1 + 2 T

T
,

(-1 + T) (p1 - p2) (T x1 - x2)

-1 + 2 T


1

2

3
4
56

7
z

-1+2 T

T
x1 x2

p1
-T+T2

-1+2 T

1-T

-1+2 T

p2
T-T2

-1+2 T

-1+T

-1+2 T 

4

16

1
12

2
7

3
8 11

56
13

9
15

10
14

The knot 817.

z = R12,1 R27 R83 R4,11 R16,5 R6,13 R14,9 R10,15;

Table[z = z // hm1k→1, {k, 2, 16}] // Last

{}→{p1,x1} 1 - 4 T + 8 T2 - 11 T3 + 8 T4 - 4 T5 + T6

T3
, 0

Proof of Theorem 3, (3).

 γ1 = {}→{p1,x1,p2,x2,p3,x3}ω, {p1, p2, p3}.
α β θγ δ ϵϕ ψ Ξ .{x1, x2, x3} ,

(γ1 // hm1,2→0)
 ω x1 x2 x3

p1 α β θ
p2 γ δ ϵ
p3 ϕ ψ Ξ 

,

ω + γ ω x0 x3

p0
α+β+γ+β γ+δ-α δ

1+γ ϵ-α ϵ+θ+γ θ
1+γ

p3
ϕ-δ ϕ+ψ+γ ψ

1+γ Ξ+γ Ξ-ϵ ϕ
1+γ 


�

References. On ωεβ=http://drorbn.net/cat20

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/
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The Burau Representation of PvBn acts on Rn
≔

Z[t±1]n = R〈v1, . . . , vn〉 by

σi jvk = vk + δk j(t − 1)(v j − vi).δ /: δi_,j_ := If[i ⩵ j, 1, 0];

Bi_,j_[ξ_] := ξ /. vk_ ⧴ vk + δk,j (t - 1) (vj - vi) // Expand

(bas3 = {v1, v2, v3}) // B1,2

{v1, v1 - t v1 + t v2, v3}

bas3 // B1,2 // B1,3 // B2,3v1, v1 - t v1 + t v2, v1 - t v1 + t v2 - t
2
v2 + t

2
v3

bas3 // B2,3 // B1,3 // B1,2v1, v1 - t v1 + t v2, v1 - t v1 + t v2 - t
2
v2 + t

2
v3

S n acts on Rn by permuting the vi so the Burau

representation extends to vBn and restricts to Bn.

With this, γi maps vi 7→ vi+1, vi+1 7→ tvi+(1−t)vi+1,

and otherwise vk 7→ vk.

· · · · · · · · ·

j i

· · · · · · · · ·

ji

The Turbo-Gassner Representation. With the same

R and V , TG acts on V ⊕ (Rn ⊗ V) ⊕ (S2V ⊗ V∗) =

R〈vk, vlk, uiu jwk〉 by
TGi_,j_[ξ_] := ξ /. 

vk_ ⧴ vk + δk,j ((ti - 1) (vj - vi) + vi,j - vi,i) +δk,i (uj - ui) ui wj,

vl_,k_ ⧴ vl,k + (ti - 1)×δk,j (vl,j - vl,i) + δl,i - δl,j ti-1 tj
(uk + δk,j (ti - 1) (uj - ui)) ui wj,

uk_ ⧴ uk + δk,j (ti - 1) (uj - ui),

wk_ ⧴ wk + (δk,j - δk,i) ti-1 - 1 wj // Expand

bas3 = v1, v2, v3, v1,1, v1,2, v1,3, v2,1, v2,2, v2,3, v3,1,

v3,2, v3,3, u1
2 w1, u1

2 w2, u1
2 w3, u1 u2 w1, u1 u2 w2, u1 u2 w3,

u1 u3 w1, u1 u3 w2, u1 u3 w3, u2
2 w1, u2

2 w2, u2
2 w3, u2 u3 w1,

u2 u3 w2, u2 u3 w3, u3
2 w1, u3

2 w2, u3
2 w3;

(bas3 // TG1,2 // TG1,3 // TG2,3) ⩵ (bas3 // TG2,3 // TG1,3 // TG1,2)

True Like Gassner, TG is also a representation of PBn.

I have no idea where it belongs!

Abstract. Which is better, an emphasis on where things happen

or on who are the participants? I can’t tell; there are advantages

and disadvantages either way. Yet much of quantum topology

seems to be heavily and unfairly biased in favour of geography.

Geographers care for placement; for them,

braids and tangles have ends at some distin-

guished points, hence they form categories

whose objects are the placements of these

points. For them, the basic operation is a binary “stacking of

tangles”. They are lead to monoidal categories, braided monoidal

categories, representation theory, and much or most of we call

“quantum topology”.

Identiters believe that strand ide-

ntity persists even if one crosses or

is being crossed. The key opera-

tion is a unary stitching operation

mab
c , and one is lead to study meta-monoids, meta-Hopf-algebras,

etc. See ωεβ/reg, ωεβ/kbh.

Geography: (better topology!)

GB ≔ 〈γi〉

/(

γiγk = γkγi when |i − k| > 1

γiγi+1γi = γi+1γiγi+1

)

= B.

Identity: (captures quantum algebra!)

IB ≔ 〈σi j〉

/(

σi jσkl = σklσi j when |{i, j, k, l}| = 4

σi jσikσ jk = σ jkσikσi j when |{i, j, k}| = 3

)

= PvB.

Theorem. Let S = {τ} be the symmetric group. Then vB is both

PvB ⋊ S � B ∗ S
/(

γiτ = τγ j when τi = j, τ(i + 1) = ( j + 1)
)

(and so PvB is “bigger” then B, and hence quantum algebra does-

n’t see topology very well).

Proof. Going left, γi 7→ σi,i+1(i i + 1). Going right, if i < j

map σi j 7→ ( j−1 j−2 . . . i)γ j−1(i i+1 . . . j) and if i > j use

σi j 7→ ( j j+1 . . . i)γ j(i i−1 . . . j+1).

ωεβ/code

vB views of σi j:

The Gold Standard is set by the “Γ-calculus” Alexan-

der formulas (ωεβ/mac). An S -component tangle T has

Γ(T ) ∈ RS × MS×S (RS ) =

{

ω S

S A

}

with RS ≔ Z({Ta : a ∈ S }):

(

✦a b, ✧b a

)

→

1 a b

a 1 1 − T±1
a

b 0 T±1
a

T1 ⊔ T2 →

ω1ω2 S 1 S 2

S 1 A1 0

S 2 0 A2

ω a b S

a α β θ

b γ δ ǫ

S φ ψ Ξ

mab
c

−−−−−−−−−−−−→
Ta,Tb → Tc























(1 − β)ω c S

c γ + αδ
1−β

ǫ + δθ
1−β

S φ +
αψ

1−β
Ξ +

ψθ

1−β























The Gassner Representation of PvBn acts on V =

Rn
≔ Z[t±1

1
, . . . , t±1

n ]n = R〈v1, . . . , vn〉 by

σi jvk = vk + δk j(ti − 1)(v j − vi).

Gi_,j_[ξ_] := ξ /. vk_ ⧴ vk + δk,j (ti - 1) (vj - vi) // Expand

(bas3 // G1,2 // G1,3 // G2,3) ⩵ (bas3 // G2,3 // G1,3 // G1,2)

True

S n acts on Rn by permuting the vi and the ti, so the Gassner re-

presentation extends to vBn and then restricts to Bn as a Z-linear

∞-dimensional representation. It then descends to PBn as a finite-

rank R-linear representation, with lengthy non-local formulas.

Geographers: Gassner is an obscure partial extension of Burau.

Identiters: Burau is a trivial silly reduction of Gassner.

T

S

T

S

a b

T

Werner

Burau

= =

i j k l i j k l i j k i j k

γ1 = γ2 = γ3 = . . .

2 31

x

Betty Jane

Gassner

deserves to

be more

famous

Adjoint-Gassner

Gassner motifs

With Roland

van der Veen

Dror Bar-Natan: Talks: Toronto-1912:

Geography vs. Identity
Thanks for inviting me to the Topology session!

ωεβ≔http://drorbn.net/to19/

c

T

mab
c

Braids.

My talk tomorrow, at the chord diagrams everywhere session:

Geography view:

so x is γ2.

Identity view:

At x strand 1 crosses strand 3, so x is σ13.

More Dror: ωεβ/talks

?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/
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Dror Bar-Natan: Talks: Columbia-191125:

Some Feynman Diagrams in Pure Algebra
With Roland

van der Veen

Thanks for allowing me in Columbia U!

ωεβ≔http://drorbn.net/co19/

Slides w/ no handout/URL should be banned!

Abstract. I will explain how the computation of compositions

of maps of a certain natural class, from one polynomial ring into

another, naturally leads to a certain composition operation of

quadratics and to Feynman diagrams. I will also explain, with

very little detail, how this is used in the construction of some

very well-behaved poly-time computable knot polynomials.

The PBW Principle Lots of algebras are isomorphic as vector

spaces to polynomial algebras. So we want to understand arbi-

trary linear maps between polynomial algebras.

Gentle Agreement. Everything converges!

Convention. For a finite set A, let zA ≔ {zi}i∈A and let

ζA ≔ {z
∗
i
= ζi}i∈A. (y, b, a, x)∗ = (η, β, α, ξ)

The Generating Series G : Hom(Q[zA]→Q[zB])→ Q~ζA, zB�.

Claim. L ∈ Hom(Q[zA]→ Q[zB]) ∼−→
G
Q[zB]~ζA� ∋ L via

G(L) ≔
∑

n∈NA

ζn
A

n!
L(zn

A) = L
(

❡

∑

a∈A ζaza

)

= L = Lgreek latin,

G−1(L)(p) =
(

p|za→∂ζa
L
)

ζa=0
for p ∈ Q[zA].

Claim. If L ∈ Hom(Q[zA] → Q[zB]), M ∈ Hom(Q[zB] →

Q[zC]), then G(L�M) =
(

G(L)|zb→∂ζb
G(M)

)

ζb=0
.

Basic Examples. 1. G(id : Q[y, a, x]→ Q[y, a, x]) = ❡ηy+αa+ξx.

Q[z]i ⊗ Q[z] j

m
i j

k
// Q[z]k

Q[zi, z j]
m

i j

k
// Q[zk]

2. The standard commutative prod-

uct m
i j

k
of polynomials is given by

zi, z j → zk. Hence G(m
i j

k
) =

m
i j

k
(❡ζizi+ζ jz j) = ❡(ζi+ζ j)zk .

Q[z]i

∆i
jk
// Q[z] j ⊗ Q[z]k

Q[zi]
∆i

jk
// Q[z j, zk]

3. The standard co-commutative co-

product ∆i
jk

of polynomials is given

by zi → z j + zk. Hence G(∆i
jk

) =

∆i
jk

(❡ζizi) = ❡ζi(z j+zk).

Heisenberg Algebras. Let H = 〈x, y〉/[x, y] = ~ (with ~ a

scalar), let Oi : Q[xi, yi] → Hi is the “x before y” PBW order-

ing map and let hm
i j

k
be the composition

Q[xi, yi, x j, y j]
Oi⊗O j

−−−−−→ Hi ⊗ H j

m
i j

k
−−−−−→ Hk

O−1
k

−−−−−→ Q[xk, yk].

ThenG(hm
i j

k
) = ❡Λ~ , whereΛ~ = −~ηiξ j+(ξi+ξ j)xk+(ηi+η j)yk.

Proof 1. Recall the “Weyl form of the CCR” ❡
ηy
❡
ξx =

❡
−~ηξ

❡
ξx
❡
ηy, and compute

G(hm
i j

k
) = ❡ξi xi+ηiyi+ξ j x j+η jy j�Oi ⊗ O j�m

i j

k
�O−1

k

= ❡ξi xi
❡
ηiyi

❡
ξ j x j

❡
η jy j�m

i j

k
�O−1

k = ❡
ξi xk

❡
ηiyk

❡
ξ j xk

❡
η jyk�O−1

k

= ❡−~ηiξ j
❡

(ξi+ξ j)xk
❡

(ηi+η j)yk�O−1
k = ❡

Λ~ .

Proof 2. We compute in a faithful 3D representation ρ of H:

(ωεβ/hm)x =

0 1 0

0 0 0

0 0 0

, y

=

0 0 0

0 0 ℏ
0 0 0

, c

=

0 0 1

0 0 0

0 0 0

;
x.y - y


.x
 ⩵ ℏ c


, x


.c
 ⩵ c


.x

, y

.c
 ⩵ c


.y


{True, True, True}Λ = -ℏ ηi ξj ck + (ξi + ξj) xk + (ηi + ηj) yk;

Simplify@With{ = MatrixExp},x ξi.y ηi.x ξj.y ηj ⩵x ∂xkΛ.y ∂ykΛ.c ∂ckΛ
True

A Real DoPeGDO Example (DoPeGDO≔Docile Perturbed

Gaussian Differential Operators). Let slǫ
2+
≔ L〈y, b, a, x〉 sub-

ject to [a, x] = x, [b, y] = −ǫy, [a, b] = 0, [a, y] = −y, [b, x] = ǫx,

and [x, y] = ǫa + b. So t ≔ ǫa − b is central and if ∃ǫ−1,

slǫ
2+
� sl2 ⊕ 〈t〉. Let CU ≔ U(slǫ

2+
), and let cm

i j

k
be the com-

position below, where Oi : Q[yi, bi, ai, xi] → CUi be the PBW

ordering map in the order ybax:

CUi ⊗CU j

m
i j

k
// CUk

Q[yi, bi, ai, xi, y j, b j, a j, x j]
cm

i j

k
//

Oi, j

OO

Q[yk, bk, ak, xk]

Ok

OO

Claim. Let (all brawn and no brains)

Λ =

(

ηi +
e−αi−ǫβiη j

1 + ǫη jξi

)

yk +

















βi + β j +
log

(

1 + ǫη jξi
)

ǫ

















bk+

(

αi + α j + log
(

1 + ǫη jξi
))

ak +

(

e−α j−ǫβ jξi

1 + ǫη jξi
+ ξ j

)

xk

Then ❡
ηiyi+βibi+αiai+ξi xi+η jy j+β jb j+α ja j+ξ j x j�Oi, j�cm

i j

k
= ❡

Λ�Ok,

and hence G(cm
i j

k
) = ❡Λ.

Proof. We compute in a faithful 2D representation ρ of CU:

(ωεβ/sl2)y =  0 0ϵ 0
, b


=  0 0

0 -ϵ , a

=  1 0

0 0
, x


=  0 1

0 0
;

a.x - x

.a
 ⩵ x


, a


.y

- y

.a
 ⩵ -y


, b

.y

- y

.b
 ⩵ -ϵ y


,

b

.x

- x

.b
 ⩵ ϵ x


, x

.y

- y

.x
 ⩵ b


+ ϵ a


{True, True, True, True, True}

Simplify@With{ = MatrixExp},ηi y.βi b.αi a.ξi x.ηj y.βj b.αj a.ξj x ⩵ y ∂ykΛ.b ∂bkΛ.a ∂akΛ.x ∂xkΛ
True

Series[Λ, {ϵ, 0, 2}]

(ak (αi + αj) + yk (ηi + ⅇ-αi ηj) +

bk (βi + βj + ηj ξi) + xk (ⅇ-αj ξi + ξj)) +ak ηj ξi - 1

2
bk ηj2 ξi2 - ⅇ-αi yk ηj (βi + ηj ξi) -

ⅇ-αj xk ξi (βj + ηj ξi) ϵ +

- 1

2
ak ηj2 ξi2 + 1

3
bk ηj3 ξi3 + 1

2
ⅇ-αi yk ηj βi2 + 2 βi ηj ξi + 2 ηj2 ξi2 +

1

2
ⅇ-αj xk ξi βj2 + 2 βj ηj ξi + 2 ηj2 ξi2 ϵ2 + O[ϵ]3

Note 1. If the lower half of the alphabet (a, b, α, β) is regarded

as constants, then Λ = C + Q +
∑

k≥1 ǫ
kP(k) is a docile perturbed

Gaussian relative to the upper half of the alphabet (x, y, ξ, η): C

is a scalar, Q is a quadratic, and deg P(k) ≤ 2k + 2.

Note 2. wt(x, y, ξ, η; a, b, α, β; ǫ) = (1, 1, 1, 1; 2, 0, 0, 2;−2).

Quadratic Casimirs. If t ∈ g ⊗ g is the quadratic Casimir of a

semi-simple Lie algebra g, then ❡
t, regarded by PBW as an ele-

ment of S⊗2 = Hom
(

S(g)⊗0 → S(g)⊗2
)

, has a latin-latin domi-

nant Gaussian factor. Likewise for R-matrices.

(Baby) DoPeGDO≔ The category with objects finite sets†1 and

mor(A→ B) =
{

L = ω exp(Q + P)
}

⊂ Q~ζA, zB, ǫ�,

where: • ω is a scalar.†2 • Q is a “small” ǫ-free quadratic in

ζA ∪ zB.†3 • P is a “docile perturbation”: P =
∑

k≥1 ǫ
kP(k), where

deg P(k) ≤ 2k+2.†4 • Compositions:†6 L�M ≔
(

L|zi→∂ζi
M

)

ζi=0
.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/

30

http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/


So What? If V is a representation, then V⊗n explodes as a func-

tion of n, while in DoPeGDO up to a fixed power of ǫ, the ranks

of mor(A→ B) grow polynomially as a function of |A| and |B|.

Compositions. In mor(A→B),

Q =
∑

i∈A, j∈B

Ei jζiz j +
1

2

∑

i, j∈A

Fi jζiζ j +
1

2

∑

i, j∈B

Gi jziz j,

and so (remember, ex = 1 + x + xx/2 + xxx/6 + . . .)

B C

E2

F2 G2

P2

ω2

Q2

A B

E1

F1 G1

P1

ω1

Q1

composition

greek latin greek latin greek latin

A C

E

F G

P

ω

Q
E1E2 + E1F2G1E2

+E1F2G1F2G1E2

+ . . .

=
∞
∑

r=0

E1(F2G1)rE2

1

1

2

2

2

where • E = E1(I − F2G1)−1E2.

• F = F1 + E1F2(I −G1F2)−1ET
1

.

• G = G2 + ET
2

G1(I − F2G1)−1E2.

• ω = ω1ω2 det(I − F2G1)−1.

• P is computed as the solution of a

messy PDE or using “connected Feyn-

man diagrams” (yet we’re still in pure

algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a “weight”∈ {0, 1, 2},

and always wt zi + wt ζi = 2.

†1. Really, “weight-graded finite sets” A = A0 ⊔ A1 ⊔ A2.

†2. Really, a power series in the weight-0 variables†5.

†3. The weight of Q must be 2, so it decomposes as Q =

Q20+Q11. The coefficients of Q20 are rational numbers while

the coefficients of Q11 may be weight-0 power series†5.

†4. Setting wt ǫ = −2, the weight of P is ≤ 2 (so the powers of

the weight-0 variables are not constrained)†5.

†5. In the knot-theoretic case, all weight-0 power series are ra-

tional functions of bounded degree in the exponentials of the

weight-0 variables.

†6. There’s also an obvious product

mor(A1 → B1)×mor(A2 → B2)→ mor(A1⊔A2 → B1⊔B2).

0
0
0

0

0

0
0
0

0

0

0

0

0
0
0

2

2

2

2

2

2

2

Analog. Solve

Ax = a, B(x)y = b

Full DoPeGDO. Compute com-

positions in two phases:

• A 1-1 phase over the ring of

power series in the weight-0 vari-

ables, in which the weight-2 vari-

ables are spectators.

• A (slightly modified) 2-0 phase

over Q, in which the weight-1

variables are spectators.

Questions. • Are there QFT precedents for “two-step Gaussian

integration”?

• In QFT, one saves even more by considering “one-particle-

irreducible” diagrams and “effective actions”. Does this mean

anything here?

• Understanding Hom(Q[zA]→ Q[zB]) seems like a good cause.

Can you find other applications for the technology here?





















QU = U~(slǫ
2+

) = A〈y, b, a, x〉~~� with [a, x] = x, [b, y] = −ǫy, [a, b] = 0,

[a, y] = −y, [b, x] = ǫx, and xy−qyx = (1−AB)/~, where q = ❡~ǫ , A = ❡−~ǫa,

and B = ❡
−~b. Also ∆(y, b, a, x) = (y1 + B1y2, b1 + b2, a1 + a2, x1 + A1 x2),

S (y, b, a, x) = (−B−1y,−b,−a,−A−1 x), and R =
∑

~ j+kykb j ⊗ a j xk/ j![k]q!.





















Theorem. Everything of value regrading U = CU and/or its

quantization U = QU is DoPeGDO:

?

m : U ⊗ U→U ∆ : U→U ⊗ UC±1∈QU

cup cap

R∈QU ⊗ QU

S : U→U tr : U→U/wx=xw Φ∈CU⊗3 J∈CU ⊗CU

also Cartan’s θ, the Dequantizator, and more, and all of their

compositions.

4D Metrized Lie Algebras

us

the Abelian
algebra

solvable
algebras

Vassiliev

slǫ
2+

algebras isomorphic
to sl2+ ≔ sl2 + 1D

Solvable Approximation. In

sln, half is enough! Indeed

sln ⊕ an−1 = D(❫, b, δ). Now

define slǫn+ ≔ D(❫, b, ǫδ).

Schematically, this is [❫,❫] = ❫,

[❴,❴] = ǫ❴, and [❫,❴] =

❴+ ǫ❫. The same process works

for all semi-simple Lie algebras,

and at ǫk+1 = 0 always yields a

solvable Lie algebra.

b, δ

b(❫) = b : ❫ ⊗❫→ ❫

b(❴){ δ : ❫→ ❫ ⊗❫
⊕ {{

Conclusion. There are lots of poly-time-computable well-

behaved near-Alexander knot invariants: • They extend to tan-

gles with appropriate multiplicative behaviour. • They have ca-

bling and strand reversal formulas. ωεβ/akt

The invariant for slǫ
2+
/(ǫ2 = 0) (prior art: ωεβ/Ov) attains

2,883 distinct values on the 2,978 prime knots with ≤ 12 cross-

ings. HOMFLY-PT and Khovanov homology together attain

only 2,786 distinct values.

knot

diag

nt
k

Alexander’s ω+ genus / ribbon

(ρ′
1
)+ unknotting # / amphi?

(ρ′
2
)+

knot

diag

nt
k

Alexander’s ω+ genus / ribbon

(ρ′
1
)+ unknotting # / amphi?

(ρ′
2
)+

knot

diag

nt
k

Alexander’s ω+ genus / ribbon

(ρ′
1
)+ unknotting # / amphi?

(ρ′
2
)+

0a
1

1 0 /✔

0 0 /✔

0

3a
1

T−1 1 / ✘

T 1 / ✘

3T 3−12T 2+26T−38

4a
1

3−T 1 / ✘

0 1 /✔

T 4−3T 3−15T 2+74T−110

5a
1

T 2−T+1 2 / ✘

2T 3+3T 2 / ✘

5T 7−20T 6+55T 5−120T 4+217T 3−338T 2+450T−510

5a
2

2T−3 1 / ✘

5T−4 1 / ✘

−10T 4+120T 3−487T 2+1054T−1362

6a
1

5−2T 1 /✔

T−4 1 / ✘

14T 4−16T 3−293T 2+1098T−1598

6a
2
−T 2+3T−3 2 / ✘

T 3−4T 2+4T−4 1 / ✘

3T 8−21T 7+49T 6+15T 5−433T 4+1543T 3−3431T 2+5482T−6410

6a
3

T 2−3T+5 2 / ✘

0 1 /✔

4T 8−33T 7+121T 6−203T 5−111T 4+1499T 3−4210T 2+7186T−8510

7a
1

T 3−T 2+T−1 3 / ✘

3T 5+5T 3+6T 3 / ✘

7T 11−28T 10+77T 9−168T 8+322T 7−560T 6+891T 5−1310T 4+

1777T 3−2238T 2+2604T−2772

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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Abstract. This will be a very “light” talk: I will explain why

about 13 years ago, in order to have a say on some problems in

knot theory, I’ve set out to find tangle invariants with some nice

compositional properties. In other talks in Sydney (ωεβ/talks) I

have explained / will explain how such invariants were found -

though they are yet to be explored and utilized.

Strand Doubling and Reversal.

ω a S

a α θ

S φ Ξ

q∆a
bc

−−−−−−→
µ≔Ta−1
ν≔α−σa

Ta 7→TbTc































ω b c S

b (σa − αTa − νTc)/µ (Tb − 1)Tcν/µ (Tb − 1)Tcθ/µ

c (Tc − 1)ν/µ (α − σaTa − νTc)/µ (Tc − 1)θ/µ

S φ φ Ξ































dS a











y
Ta→T−1

a





















αω/σa a S

a 1/α θ/α

S −φ/α (αΞ − φθ)/α





















Where σ assigns to every a ∈ S a Laurent mono-

mial σa in {tb}b∈S subject to σ
(

✦
a b

, ✧
b a

)

= (a →

1, b → t±1
a ), σ(T1 ⊔ T2) = σ(T1) ⊔ σ(T2), and

σ�mab
c = (σ \ {a, b}) ∪ (c→ σaσb)|ta,tb→tc

.

(v-)Tangles.

(meta-associativity:

mab
x �mxc

y = mbc
x �max

y )

(tangles are generated

by ✦ and ✧)

Genus. Every knot is the boundary of an orie-

ntable “Seifert Surface” (ωεβ/SS), and the least

of their genera is the “genus” of the knot.

Claim. The knots of genus ≤ 2 are precisely the

images of 4-component tangles via

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be

presented as the boundary of a disk that has “ribbon singularities”,

but no “clasp singularities”. A “slice knot” is a knot in S 3 = ∂B4

which is the boundary of a non-singular disk in B4. Every ribbon

knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

Fox-Milnor. The Alexander polynomial of a ribbon knot is always

of the form A(t) = f (t) f (1/t). (also for slice)

ωεβ/AlexDemo

Runs.Meta-Associativity

R3

Implementation key idea:

(ω, A = (αab))↔

(ω, λ =
∑

αabtahb)

Vo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for

ribbon knots using this technology (and more).

Fact. Γ is better viewed as an invariant of

a certain class of 2D knotted objects in R4

[BND, BN].

Fact. Γ is the “0-loop” part of an inva-

riant that generalizes to “n-loops” (1D tangles

only, see further talks and future publications

with van der Veen).

Speculation. Stepping stones to categorifica-

tion?

Theorem. K is ribbon iff it is κT for a tangle T for which τT is

the untangle U.

Gompf, Schar-

lemann, Tho-

mpson [GST]

The Gold Standard is set by the “Γ-calculus” Alexan-

der formulas [BNS, BN]. An S -component tangle T has

Γ(T ) ∈ RS × MS×S (RS ) =

{

ω S

S A

}

with RS ≔ Z({Ta : a ∈ S }):

(

✦a b, ✧b a

)

→

1 a b

a 1 1 − T±1
a

b 0 T±1
a

T1 ⊔ T2 →

ω1ω2 S 1 S 2

S 1 A1 0

S 2 0 A2

ω a b S

a α β θ

b γ δ ǫ

S φ ψ Ξ

mab
c

−−−−−−−−−−−−→
Ta,Tb → Tc























(1 − β)ω c S

c γ + αδ
1−β

ǫ + δθ
1−β

S φ +
αψ

1−β
Ξ +

ψθ

1−β























For long knots, ω is Alexander, and that’s the fastest

Alexander algorithm I know! Dunfield: 1000-crossing fast.

A2n

1 ∈ An

with R ≔
κ(τ−1(1))T2n

U ∈ Tn

z(K) ∈ R ⊆ A1ribbon K ∈ T1 Ask me about geography vs. identity!

Strand
doubling:

,

Strand
reversal:

T

a clasp singularity

TT T

U K

Dror Bar-Natan: Talks: Macquarie-191016:

Algebraic Knot Theory
ωεβ≔http://drorbn.net/mac19/

“stitching”

⊔
T1T2T1 T2

a b

T
mab

c

c

T

a

c

b a a∆a
bc

S a

Robert Engman’s
“The Loop”

1
3

4
2

T

T

a ribbon singularity

example

. . . divide and conquer!

+ + + +

−−− −

M. Polyak & T. Ohtsuki
@ Heian Shrine, Kyoto

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org

τ κ

Faster is better, leaner is meaner!

z

κ

τ

κ

τ

817
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?

Theorem ([BG], conjectured [MM],

elucidated [Ro1]). Let Jd(K) be

the coloured Jones polynomial of K, in the d-dimensional

representation of sl2. Writing

(q1/2 − q−1/2)Jd(K)

qd/2 − q−d/2

∣

∣

∣

∣

∣

∣

q=e~

=
∑

j,m≥0

a jm(K)d j~m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients

give the inverse of the Alexander polynomial:
(

∑∞
m=0 amm(K)~m

)

· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)















1 +

∞
∑

k=1

(q − 1)kρk(K)(qd)

ω2k(K)(qd)















.

Melvin,

Morton,

Garoufalidis

Abstract. I’ll explain what “everything around” means: classical

and quantum m, ∆, S , tr, R, C, and θ, as well as P, Φ, J, D,

and more, and all of their compositions. What DoPeGDO means:

the category of Docile Perturbed Gaussian Differential Operators.

And what slǫ
2+

means: a solvable approximation of the semi-

simple Lie algebra sl2.

Knot theorists should rejoice because all this leads to very po-

werful and well-behaved poly-time-computable knot invariants.

Quantum algebraists should rejoice because it’s a realistic play-

ground for testing complicated equations and theories.

Cartan’s θ,
the

Dequantizator,
and more. . .

Conventions. 1. For a set A, let zA ≔ {zi}i∈A and let

ζA ≔ {z
∗
i
= ζi}i∈A.†1 2. Everything converges!

DoPeGDO ≔ The category with objects finite

sets†2 and mor(A→ B):
{

F = ω exp(Q + P)
}

⊂ Q~ζA, zB, ǫ�

Where: • ω is a scalar.†3 • Q is a “small” ǫ-free

quadratic in ζA ∪ zB.†4 • P is a “docile perturba-

tion”: P =
∑

k≥1 ǫ
kP(k), where deg P(k) ≤ 2k+2.†5

• Compositions:†6

F�G = G◦F ≔
(

G|ζi→∂zi
F
)

zi=0
=
(

F |zi→∂ζi
G
)

ζi=0
.

Cool! (V∗)⊗Σ ⊗ V⊗S explodes; the ranks of qua-

dratics and bounded-degree polynomials grow

slowly!†7 Representation theory is over-rated!

Cool! How often do you see a computational to-

olbox so successful?

DoPeGDO Footnotes. †1. Each variable has a “weight”∈ {0, 1, 2}, and

always wt zi + wt ζi = 2.

†2. Really, “weight-graded finite sets” A = A0 ⊔ A1 ⊔ A2.

†3. Really, a power series in the weight-0 variables†9.

†4. The weight of Q must be 2, so it decomposes as Q = Q20 +Q11. The

coefficients of Q20 are rational numbers while the coefficients of Q11

may be weight-0 power series†9.

†5. Setting wt ǫ = −2, the weight of P is ≤ 2 (so the powers of the

weight-0 variables are not constrained†9).

†6. There’s also an obvious product

mor(A1 → B1) ×mor(A2 → B2)→ mor(A1 ⊔ A2 → B1 ⊔ B2).

†7. That is, if the weight-0 variables are ignored. Otherwise more care

is needed yet the conclusion remains.

†8. Hom(U⊗Σ → U⊗S ) { mor({ηi, βi, τi,αi, ξi}i∈Σ → {yi, bi, ti,ai, xi}i∈S ),

where wt(ηi, ξi, yi, xi) = 1 and wt(βi, τi,αi; bi, ti, ai) = (2, 2, 0; 0, 0, 2).

†9. For tangle invariants the wt-0 power series are always rational fu-

nctions in the exponentials of the wt-0 variables (for knots: just one

variable), with degrees bounded linearly by the crossing number.

Our Algebras. Let slǫ
2+
≔ L〈y, b, a, x〉 subject to [a, x] = x,

[b, y] = −ǫy, [a, b] = 0, [a, y] = −y, [b, x] = ǫx, and [x, y] =

ǫa + b. So t ≔ ǫa − b is central and if ∃ǫ−1, slǫ
2+
/〈t〉 � sl2. ωεβ/oa

U is either CU = U(slǫ
2+

)~~� or QU = U~(slǫ
2+

) =

A〈y, b, a, x〉~~� with [a, x] = x, [b, y] = −ǫy, [a, b] = 0, [a, y] =

−y, [b, x] = ǫx, and xy − qyx = (1 − AB)/~, where q = ❡
~ǫ ,

A = ❡−~ǫa, and B = ❡−~b. Set also T = A−1B = ❡~t.

The Quantum Leap. Also decree that in QU,

∆(y, b, a, x) = (y1 + B1y2, b1 + b2, a1 + a2, x1 + A1x2),

S (y, b, a, x) = (−B−1y,−b,−a,−A−1x),

and R =
∑

~ j+kykb j ⊗ a jxk/ j![k]q!.

Compositions (1).

Where • E = E1(I − F2G1)−1E2.

• F = F1 + E1F2(I −G1F2)−1ET
1

.

• G = G2 + ET
2

G1(I − F2G1)−1E2.

• ω = ω1ω2 det(I − F2G1)−1.

• P is computed using “connected Feyn-

man diagrams” or as the solution of a messy

PDE (yet we’re still in algebra!).

Mid-Talk Debts. •What is this good for in quantum algebra?

• In knot theory?

• How does the “inclusion” D : Hom(U⊗Σ → U⊗S ) {

DoPeGDO work?

• Proofs that everything around slǫ
2+

really is DoPeGDO.

• Relations with prior art.

• The rest of the “compositions” story.

Less Abstract

D

Thanks for inviting me to UCLA!
ωεβ≔http://drorbn.net/la19/

More at ωεβ/talks

Dror Bar-Natan: Talks: UCLA-191101:

Everything around slǫ
2+

is DoPeGDO. So what?

m
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ne
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−
1 —
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A
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x
an

d
er
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v
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h
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e

Continues Rozansky [Ro1,

Ro2, Ro3] and Overbay [Ov],

joint with van der Veen [BV].

m : U ⊗ U→U

tr : U→U/wx=xw

Φ∈CU⊗3

∆ : U→U ⊗ U

R∈QU ⊗ QU

J∈CU ⊗CU

S : U→U

C±1∈QU

cup cap

†8

4D Metrized Lie Algebras

In mor(A→B), Q=
∑

i∈A, j∈B

Ei jζiz j+
1
2

∑

i, j∈A

Fi jζiζ j+
1
2

∑

i, j∈B

Gi jziz j

composition

�
One abstraction level

up from tangles!

{tangles} →

{ }

with compositions:

A B

E1

F1 G1

P1

ω1 B C

E2

F2 G2

P2

ω2 A C

E

F G

P

ω

greek latin

Q1 Q2 Q

us

the Abelian
algebra

solvable
algebras

Vassiliev

slǫ
2+

algebras isomorphic
to sl2+ ≔ sl2 + 1D

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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Knotted Candies ωεβ/kc

z′
2

z′
1

z′
1

ζ′
1

ζ′
1

ζ′
2

PBW Bases. The U’s we care about always have “Poincaré-

Birkhoff-Witt” bases; there is some finite set B = {y, x, . . . } of

“generators” and isomorphisms Oy,x,... : Ŝ(B) → U defined by

“ordering monomials” to some fixed y, x, . . . order. The quantum

group portfolio now becomes a “symmetric algebra” portfolio, or

a “power series” portfolio.

Operations are Objects.

⋆ B∗ ≔ {z∗i = ζi : zi ∈ B},

〈zm
i , ζ

n
i 〉 = δmnn!,〈∏

z
mi

i
,
∏
ζ

ni

i

〉
=

∏
δmini

ni!,

in general, for f ∈ S(zi) and g ∈ S(ζi),

〈 f , g〉 = f (∂ζi)g
∣∣∣
ζi=0
= g(∂zi

) f
∣∣∣
zi=0
.

The Composition Law. If

S(B)
f

−−−−−−→
f̃∈Q~ζi,z

′
j
�

S(B′)
g

−−−−−−−→
g̃∈Q~ζ′

j
,z′′

k
�
S(B′′)

then (̃ f�g) = ˜(g ◦ f ) =

(
g̃|ζ′

j
→∂z′

j

f̃

)

z′
j
=0

=

(
f̃
∣∣∣
z′

j
→∂ζ′

j

g̃

)

ζ′
j
=0

:

Solvable Approximation. In gln, half is enough! Indeed gln ⊕

an = D(❫, b, δ):

Now define glǫn ≔ D(❫, b, ǫδ). Schematically, this is [❫,❫] = ❫,

[❴,❴] = ǫ❴, and [❫,❴] = ❴ + ǫ❫. The same process works for

all semi-simple Lie algebras, and at ǫk+1 = 0 always yields a

solvable Lie algebra.

CU and QU. Starting from sl2, get CUǫ = 〈y, a, x, t〉/([t,−] =

0, [a, y] = −y, [a, x] = x, [x, y] = 2ǫa − t). Quantize using

standard tools (I’m sorry) and get QUǫ = 〈y, a, x, t〉/([t,−] =

0, [a, y] = −y, [a, x] = x, xy − ❡~ǫyx = (1 − T❡−2~ǫa)/~).

The (fake) moduli of Lie alge-

bras on V , a quadratic variety in

(V∗)⊗2⊗V is on the right. We ca-

re about slk
17
≔ slǫ

17
/(ǫk+1 = 0).

Abstract. A major part of “quantum topology” is the defini-

tion and computation of various knot invariants by carrying out

computations in quantum groups. Traditionally these computa-

tions are carried out “in a representation”, but this is very slow:

one has to use tensor powers of these representations, and the

dimensions of powers grow exponentially fast.

In my talk, I will describe a direct method for carrying out such

computations without having to choose a representation and ex-

plain why in many ways the results are better and faster. The two

key points we use are a technique for composing infinite-order

“perturbed Gaussian” differential operators, and the little-known

fact that every semi-simple Lie algebra can be approximated by

solvable Lie algebras, where computations are easier.

KiW 43 Abstract (ωεβ/kiw). Whether or not you like the formu-

las on this page, they describe the strongest truly computable knot

invariant we know. (experimental analysis @ωεβ/kiw)

The Yang-Baxter Technique. Given an al-

gebra U (typically Û(g) or Ûq(g)) and ele-

ments

R =
∑

ai ⊗ bi ∈ U ⊗ U and C ∈ U,

form Z =
∑

i, j,k

Caib jakC
2bia jbkC.

Problem. Extract information from Z.

The Dogma. Use representation theory. In

principle finite, but slow.

A Knot Theory Portfolio.

• Has operations ⊔, m
i j

k
, ∆i

jk
, S i.

• All tangloids are generated by

R±1 and C±1 (so “easy” to pro-

duce invariants).

• Makes some knot properties

(“genus”, “ribbon”) become

“definable”.

A “Quantum Group” Portfolio consists of a vector space U

along with maps (and some axioms. . . )

Q = Û⊗∅
Ci // Û⊗{i}

S i

�� ∆i
jk

,,
Û⊗{ j,k}

m
jk

i

ll Q = Û⊗∅
R jkoo

Ŝ (∅)
Ci //

O()

OO

Ŝ (Bi)

S i

CC

∆i
jk --

Oyi xi ...

OO

Ŝ
(
B j, Bk

)

m
jk

i

ll

Oy j x j ...⊗yk xk ...

OO

Ŝ (∅)
R jkoo

O()

OO

Examples1. The 1-variable identity map I : S(z)→ S(z) is

given by Ĩ1 = ❡
zζ and the n-variable one by Ĩn = ❡

z1ζ1+···+znζn :

2. The “archetypal multiplication map m
i j

k
: S(zi, z j) → S(zk)”

has m̃ = ❡zk(ζi+ζ j).

3. The “archetypal coproduct ∆i
jk

: S(zi) → S(z j, zk)”, given by

zi → z j + zk or ∆z = z ⊗ 1 + 1 ⊗ z, has ∆̃ = ❡(z j+zk)ζi .

4. R-matrices tend to have terms of the form ❡
~y1 x2

q ∈ Uq ⊗ Uq.

The “baby R-matrix” is R̃ = ❡~yx ∈ S(y, x).

5. The “Weyl form of the canonical commutation relations” sta-

tes that if [y, x] = tI then ❡
ξx
❡
ηy = ❡

ηy
❡
ξx
❡
−ηξt. So with

S(y, x)

Oxy --

Oyx

11SWxy
::

U(y, x) we have S̃Wxy = ❡
ηy+ξx−ηξt.

Our Way. For certain algebras,
work in a homomorphic poly-
dimensional “space of formulas”.

�

ωεβ≔http://drorbn.net/o19/

Thanks for inviting me to Ohio!

+ + +1
2

1
6

· · ·+=Ĩ1

f g f g

∑
=

S (B)∗ ⊗ S (B′)

f ∈ HomQ(S (B)→ S (B′))

S (B∗) ⊗ S (B′)

S (B∗ ⊔ B′)

f̃ ∈ Q[ζi, z
′
i
]

=
=

=
=

⋆

b, δ

b(❫) = b : ❫ ⊗❫→ ❫

b(❴){ δ : ❫→ ❫ ⊗❫
⊕ {{

slǫ
17

0

sl+
17

sl0
17

E9 F5

Computation without Representation
Dror Bar-Natan: Talks: Ohio-1901: Follows Rozansky [Ro1, Ro2, Ro3] and

Overbay [Ov], joint with van der Veen.

More at [BV] and at ωεβ/talks.

⊔ → ⊗

⊔ → ·

Tangloids and Operations

strand

cuap C±1
i

doubling

stitching

reversal S i∆i
jk

m
i j

k

m
i j

k

stitching

crossing R±1
i j

cuap C±1
i

ak

bi

C
ai

C

b j a j

bk

C C

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Ohio-1901
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Do Not Turn Over Until Instructed

Do Not Turn Over Until Instructed

Abstract. Whatever it may be, it should say something useful

and exciting and it should not be *about* rigour, yet it should

*demand* rigour. You can’t guess. You probably think it the

dreariest. You are wrong.

Contents s

Prologue

1 Basic Properties of Numbers 3

2 Numbers of Various Sorts 21

Foundations

3 Functions 39

4 Graphs 56

5 Limits 90

6 Continuous Functions 113

7 Three Hard Theorems 120

8 Least Upper Bounds 142

Derivatives and Integrals

9 Derivatives 147

10 Differentiation 166

11 Significance of the Derivative 185

12 Inverse Functions 227

13 Integrals 250

14 The Fundamental Theorem of Calculus 282

15 The Trigonometric Functions 300

∗16 π is Irrational 321

∗17 Planetary Motion 327

18 The Logarithm and Exponential Functions 336

19 Integration in Elementary Terms 359

Infinite Sequences and Infinite Series

20 Approximation by Polynomial Functions 405

6 Continuous Functions.

7 Three Hard Theorems.

14 The Fundamental Theorem of Calculus.

∗16 π is Irrational.

20 Approximation by Polynomial Functions.

For example for f (x) = sin(x)

at a = 0, f (k) = sin, cos, − sin,

− cos, sin, . . . , so

ak =















(−1)(k−1)/2

k!
k odd

0 k even

11 Significance of the Derivative.

Some sizes (in multiples of the diameter of

a Hydrogen atom:

A red blood cell 1.56 × 105

The CN Tower 1.11 × 1013

The rings of Saturn 5.6 × 1018

The Milky Way galaxy 1.89 × 1031

The observable universe 1.76 × 1037

Several excerpts here are from

Spivak’s “Calculus” s. I believe

they fall under “fair use”.

Handout, video, links at ωεβ≔http://drorbn.net/maa18/

Thanks for inviting me to the fall 2018 MAA Seaway Section meeting!

My Favourite First-Year Analysis Theorem
Dror Bar-Natan: Talks: MAASeaway-1810:

s

s

s

s

s

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/
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A2n

1 ∈ An

with R ≔
κ(τ−1(1))

T2n

U ∈ Tn

z(K) ∈ R ⊆ A1ribbon K ∈ T1

Gompf, Schar-

lemann, Tho-

mpson [GST]

The Gold Standard is set by the “Γ-calculus” Alexander

formulas [BNS, BN1]. An S -component tangle T has

Γ(T ) ∈ RS × MS×S (RS ) =

{

ω S

S A

}

with RS ≔ Z({ta : a ∈ S }):

(

✦a b, ✧b a

)

→

1 a b

a 1 1 − t±1
a

b 0 t±1
a

T1 ⊔ T2 →

ω1ω2 S 1 S 2

S 1 A1 0

S 2 0 A2

ω a b S

a α β θ

b γ δ ǫ

S φ ψ Ξ

mab
c

−−−−−−−−−→
ta, tb → tc























(1 − β)ω c S

c γ + αδ
1−β

ǫ + δθ
1−β

S φ +
αψ

1−β
Ξ +

ψθ

1−β























(Roland: “add to A the product of column b and row a, divide by (1 − Aab),

delete column b and row a”.)

For long knots, ω is Alexander, and that’s the fastest

Alexander algorithm I know! Dunfield: 1000-crossing fast.

ω a S

a α θ

S φ Ξ

q∆a
bc

−−−−−−→
µ≔Ta−1
ν≔α−σa

Ta 7→TbTc































ω b c S

b (σa − αTa − νTc)/µ (Tb − 1)Tcν/µ (Tb − 1)Tcθ/µ

c (Tc − 1)ν/µ (α − σaTa − νTc)/µ (Tc − 1)θ/µ

S φ φ Ξ































dS a











y
Ta→T−1

a





















αω/σa a S

a 1/α θ/α

S −φ/α (αΞ − φθ)/α





















Where σ assigns to every a ∈ S a Laurent mono-

mial σa in {tb}b∈S subject to σ
(

✦
a b

, ✧
b a

)

= (a →

1, b → t±1
a ), σ(T1 ⊔ T2) = σ(T1) ⊔ σ(T2), and

σ�mab
c = (σ \ {a, b}) ∪ (c→ σaσb)|ta,tb→tc

.

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be

presented as the boundary of a disk that has “ribbon singularities”,

but no “clasp singularities”. A “slice knot” is a knot in S 3 = ∂B4

which is the boundary of a non-singular disk in B4. Every ribbon

knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

Fox-Milnor. The Alexander polynomial of a ribbon knot is always

of the form A(t) = f (t) f (1/t). (also for slice)

(v-)Tangles.

(meta-associativity:

mab
x �mxc

y = mbc
x �max

y )

(tangles are generated

by ✦ and ✧)

Genus. Every knot is the boundary of an orie-

ntable “Seifert Surface” (ωεβ/SS), and the least

of their genera is the “genus” of the knot.

Claim. The knots of genus ≤ 2 are precisely the

images of 4-component tangles via

R, s ∈ {QU⊗S }

⊗,m
i j

k
,∆i

jk
,S i,θ

��
AD, SD

// {CU⊗S }

⊗,m
i j

k
,∆i

jk
,S i,θ

��

The quantum sl2 Portfolio

includes a classical universal

enveloping algebra CU, its

quantization QU, their tensor

powers CU⊗S and QU⊗S with the “tensor operations” ⊗, their

products m
i j

k
, coproducts ∆i

jk
and antipodes S i, their Cartan auto-

mophisms Cθ : CU → CU and Qθ : QU → QU, the “dequanti-

zators” AD : QU → CU and SD : QU → CU, and most impor-

tantly, the R-matrix R and the Drinfel’d element s. All this in any

PBW basis, and change of basis maps are included.

Our Main Theorem (loosely stated). Everything that matters in

the quantum sl2 portfolio can be continuously expressed in terms

of docile perturbed Gaussians using solvable approximations. ©

Our Main Points.

• What’s the “quantum sl2 portfolio”?

• What in it “matters” and why? (the most important question)

• What’s “solvable approximation”? What’s “continuously”?

• What are “docile perturbed Gaussians”?

• Why do they matter? (2nd most important)

• How proven? (docile)

• How implemented? (sacred; the work of unsung heroes)

• Some context and background.

• What’s next?

ωεβ/AlexDemo

Runs.Meta-Associativity

R3

Implementation key idea:

(ω, A = (αab))↔

(ω, λ =
∑

αabtahb)

Vo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for

ribbon knots using this technology (and more).

B
rute

W
arning

With Roland van der Veen

ωεβ≔http://drorbn.net/mm18/ W
.I

.P
.

W
ar

ni
ng

z

κ

τ

κ

τ

TT Tτ κ

Faster is better, leaner is meaner!

+ + + +

−−− −

Strand

doubling:

,

Strand

reversal:

T

a clasp singularity

[BN2]

a ribbon singularity

example

“stitching”

⊔
T1T2T1 T2

a b

T
mab

c

c

T

a

c

b a a∆a
bc

S a

Robert Engman’s
“The Loop”

1

3

4

2

T

T

Dror Bar-Natan: Talks: Matemale-1804:

Solvable Approximations of the Quantum sl2 Portfolio
See also [BV]

. . . divide and conquer!

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org 817

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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Experimental Analysis (ωεβ/Exp). Log-log plots of computation

time (sec) vs. crossing number, for all knots with up to 12 cros-

sings (mean times) and for all torus knots with up to 48 crossings:

Power. On the 250 knots with at most 10 crossings, the pair

(ω, ρ1) attains 250 distinct values, while (Khovanov, HOMFLY-

PT) attains only 249 distinct values. To 11 crossings the numbers

are (802, 788, 772) and to 12 they are (2978, 2883, 2786).

Genus. Up to 12 xings, always ρ1 is symmetric under t ↔ t−1.

With ρ+
1

denoting the positive-degree part of ρ1, always deg ρ+
1
≤

2g − 1, where g is the 3-genus of K (equality for 2530 knots).

This gives a lower bound on g in terms of ρ1 (conjectural, but

undoubtedly true). This bound is often weaker than the Alexander

bound, yet for 10 of the 12-xing Alexander failures it does give

the right answer.

{U⊗S }{FS }

The (fake) moduli of Lie alge-

bras on V , a quadratic variety in

(V∗)⊗2⊗V is on the right. We ca-

re about slk
17
≔ slǫ

17
/(ǫk+1 = 0).

Abstract. It has long been known that there are knot invariants

associated to semi-simple Lie algebras, and there has long been

a dogma as for how to extract them: “quantize and use repre-

sentation theory”. We present an alternative and better procedu-

re: “centrally extend, approximate by solvable, and learn how to

re-order exponentials in a universal enveloping algebra”. While

equivalent to the old invariants via a complicated process, our i-

nvariants are in practice stronger, faster to compute (poly-time vs.

exp-time), and clearly carry topological information.

KiW 43 Abstract (ωεβ/kiw). Whether or not you like the formu-

las on this page, they describe the strongest truly computable knot

invariant we know.

Ribbon Knots.

Gompf, Schar-

lemann, Tho-

mpson [GST]

A2n

1 ∈ An

T2n

U ∈ Tn

z(K) ∈ R ⊆ A1ribbon K ∈ T1

with R ≔ κ(τ−1(1))

A+ = −t8 + 2t7 − t6 − 2t4 + 5t3 − 2t2 − 7t + 13

ρ+
1
= 5t15 − 18t14 + 33t13 − 32t12 + 2t11 + 42t10 − 62t9 − 8t8 + 166t7 − 242t6+

108t5 + 132t4 − 226t3 + 148t2 − 11t − 36

[Vo]: Works

for Alexander!

Theorem ([BNG], conjectured [MM], e-

lucidated [Ro1]). Let Jd(K) be the co-

loured Jones polynomial of K, in the d-dimensional representa-

tion of sl2. Writing

(q1/2 − q−1/2)Jd(K)

qd/2 − q−d/2

∣

∣

∣

∣

∣

∣

q=e~

=
∑

j,m≥0

a jm(K)d j
~

m,

“below diagonal” coefficients vanish, a jm(K) =

0 if j > m, and “on diagonal” coefficients

give the inverse of the Alexander polynomial:
(

∑∞
m=0 amm(K)~m

)

· ω(K)(e~) = 1.

“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

Jd(K)(q) =
qd − q−d

(q − q−1)ω(K)(qd)















1 +

∞
∑

k=1

(q − 1)kρk(K)(qd)

ω2k(K)(qd)















.

Melvin,

Morton,

Garoufalidis

The Yang-Baxter Technique. Given an alge-

bra U (typically Û(g) or Ûq(g)) and elements

R =
∑

ai ⊗ bi ∈ U ⊗ U and C ∈ U,

form

Z =
∑

i, j,k

Caib jakC
2bia jbkC.

Problem. Extract information from Z.

The Dogma. Use representation theory. In

principle finite, but slow.

The Loyal Opposition. For certain algebras, work in a homomor-

phic poly-dimensional

“space of formulas”.

Recomposing gln. Half is enough! gln ⊕ an = D(❫, b, δ):

Now define glǫn ≔ D(❫, b, ǫδ). Schematically, this is [❫,❫] = ❫,

[❴,❴] = ǫ❴, and [❫,❴] = ❴ + ǫ❫. In detail, it is

[xi j, xkl]=δ jk xil − δlixk j [yi j, ykl]=ǫδ jkyil − ǫδliyk j

[xi j, ykl]=δ jk(ǫδ j<k xil + δil(bi + ǫai)/2 + δi>lyil)

−δli(ǫδk< jxk j + δk j(b j + ǫa j)/2 + δk> jyk j)

[ai, x jk]= (δi j − δik)x jk [bi, x jk]=ǫ(δi j − δik)x jk

[ai, y jk]= (δi j − δik)y jk [bi, y jk]=ǫ(δi j − δik)y jk

The Main sl2 Theorem. Let gǫ = 〈t, y, a, x〉/([t, ·] = 0, [a, x] =

x, [a, y] = −y, [x, y] = t−2ǫa) and let gk = g
ǫ/(ǫk+1 = 0). The gk-

invariant of any S -component tangle K can be written in the form

Z(K) = O
(

ω❡L+Q+P :
⊗

i∈S yiaixi

)

, where ω is a scalar (a ratio-

nal function in the variables ti and their exponentials Ti ≔ ❡
ti),

where L =
∑

li jtia j is a quadratic in ti and a j with integer coef-

ficients li j, where Q =
∑

qi jyix j is a quadratic in the variables yi

and x j with scalar coefficients qi j, and where P is a polynomial in

{ǫ, yi, ai, xi} (with scalar coefficients) whose ǫd-term is of degree

at most 2d+2 in {yi,
√

ai, xi}. Furthermore, after setting ti = t and

Ti = T for all i, the invariant Z(K) is poly-time computable.

Ordering Symbols. O (poly | specs) plants the variables of poly in

S(⊕ig) on several tensor copies ofU(g) according to specs. E.g.,

O

(

a3
1y1a2ey3 x9

3 | x3a1 ⊗ y1y3a2

)

= x9a3 ⊗ yeya ∈ U(g) ⊗U(g)

This enables the description of elements of Û(g)⊗S using com-

mutative polynomials / power series.
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Follows Rozansky [Ro1, Ro2, Ro3] and Overbay [Ov],

joint with van der Veen. Preliminary writeup [BV1],

fuller writeup [BV2]. More at ωεβ/talks.
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The Dogma is Wrong
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Faster is better, leaner is meaner!

Happy Birthday Anton!

ωεβ≔http://drorbn.net/ld17/
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1708/
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But Z lives inU, a complicated space. How do you extract infor-

mation out of it?

Solution 1, Representation Theory. Choose a finite dimensional

representation ρ of g in some vector space V . By luck and the

wisdom of Drinfel’d and Jimbo, ρ(R) ∈ V∗ ⊗ V∗ ⊗ V ⊗ V and

ρ(C) ∈ V∗ ⊗ V are computable, so Z is computable too. But in

exponential time!

Solution 2, Solvable Approximation. Work directly in Û(gk), w-

here gk = slk
2

(or a similar algebra); everything is expressible

using low-degree polynomials in a small number of variables, h-

ence everything is poly-time computable!

Example 0. Take g0 = sl0
2
= Q〈h, e, l, f 〉, with h central and

[ f , l] = f , [e, l] = −e, [e, f ] = h. In it, using normal orderings,

R = O

(

exp

(

hl +
❡

h − 1

h
e f

)

| e ⊗ lf

)

, and,

O
(

❡
δe f | fe

)

= O
(

ν❡νδef | ef
)

with ν = (1 + hδ)−1.

Example 1. Take R = Q[ǫ]/(ǫ2 = 0) and g1 = sl1
2
= R〈h, e, l, f 〉,

with h central and [ f , l] = f , [e, l] = −e, [e, f ] = h − 2ǫl. In it,

O
(

❡
δe f | fe

)

= O
(

ν(1 + ǫνδΛ/2)❡νδef | elf
)

, where Λ is

4ν3δ2e2 f 2+3ν3δ3he2 f 2+8ν2δe f +4ν2δ2he f +4νδel f −2νδh+4l.

Fact. Setting hi = h (for all i) and t = ❡
h, the g1 invariant of any

tangle T can be written in the form

Zg1(T ) = O

(

ω−1
❡

hL+ω−1Q(1 + ǫω−4P) |
⊗

i

eili fi

)

,

where L is linear, Q quadratic, and P quartic in the {ei, li, fi} with

ω and all coefficients polynomials in t. Furthermore, everything

is poly-time computable.

Abstract. Recently, Roland van der Veen and myself found that

there are sequences of solvable Lie algebras “converging” to any

given semi-simple Lie algebra (such as sl2 or sl3 or E8). Certain

computations are much easier in solvable Lie algebras; in particu-

lar, using solvable approximations we can compute in polynomial

time certain projections (originally discussed by Rozansky) of the

knot invariants arising from the Chern-Simons-Witten topologi-

cal quantum field theory. This provides us with the first strong

knot invariants that are computable for truly large knots.

But sl2 and sl3 and similar algebras occur in physics (and in

mathematics) in many other places, beyond the Chern-Simons-

Witten theory. Do solvable approximations have further applica-

tions?
Recomposing gln. Half is enough! gln ⊕ an = D(❫, b, δ):

Now define glǫn ≔ D(❫, b, ǫδ). Schematically, this is [❫,❫] = ❫,

[❴,❴] = ǫ❴, and [❫,❴] = ❴ + ǫ❫. In detail, it is

[ei j, ekl]=δ jkeil − δliek j [ fi j, fkl]=ǫδ jk fil − ǫδli fk j

[ei j, fkl]=δ jk(ǫδ j<keil + δil(hi + ǫgi)/2 + δi>l fil)

−δli(ǫδk< jek j + δk j(h j + ǫg j)/2 + δk> j fk j)

[gi, e jk]= (δi j − δik)e jk [hi, e jk]=ǫ(δi j − δik)e jk

[gi, f jk]= (δi j − δik) f jk [hi, f jk]=ǫ(δi j − δik) f jk

Solvable Approximation. At ǫ = 1 and modulo h = g, the above

is just gln. By rescaling at ǫ , 0, glǫn is independent of ǫ. We

let glkn be glǫn regarded as an algebra over Q[ǫ]/ǫk+1 = 0. It is the

“k-smidgen solvable approximation” of gln!

Recall that g is “solvable” if iterated commutators in it ultimately

vanish: g2 ≔ [g, g], g3 ≔ [g2, g2], . . . , gd = 0. Equivalently, if it

is a subalgebra of some large-size ❫ algebra.

Note. This whole process makes sense for arbitrary semi-simple

Lie algebras.

Chern-Simons-Witten. Given a knot γ(t) in

R3 and a metrized Lie algebra g, set Z(γ) ≔
∫

A∈Ω1(R3,g)

DA ❡
ik cs(A)PExpγ(A),

where cs(A) ≔ 1
4π

∫

R3 tr
(

AdA + 2
3
A3

)

and

PExpγ(A) ≔

1
∏

0

exp(γ∗A) ∈ U = Û(g),

and U(g) ≔ 〈words in g〉/(xy − yx = [x, y]).

In a favourable gauge, one may hope that this

computation will localize near the crossings

and the bends, and all will depend on just two

quantities,

R =
∑

ai ⊗ bi ∈ U ⊗U and C ∈ U.

This was never done formally, yet R and C

can be “guessed” and all “quantum knot inva-

riants” arise in this way. So for the trefoil,

Z =
∑

i, j,k

Caib jakC
2bia jbkC.

Why are “solvable algebras” any good? Contrary to common

beliefs, computations in semi-simple Lie algebras are just awful:

Yet in solvable algebras, exponentiation is fine and even BCH,

z = log(❡x
❡

y), is bearable:

Question. What else can you do with solvable approximation?

Chern-Simons-Witten theory is often “solved” using ideas from

conformal field theory and using quantization of various moduli

spaces. Does it make sense to use solvable approximation there

too? Elsewhere in physics? Elsewhere in mathematics?

See Also. Talks at George Washington University [ωεβ/gwu],

Indiana [ωεβ/ind], and Les Diablerets [ωεβ/ld], and a University

of Toronto “Algebraic Knot Theory” class [ωεβ/akt].
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What else can you do with solvable approximations? Thanks for the invitation!
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Ribbon=Slice?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/McGill-1702/
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