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A Seifert Dream

Thanks for inviting me to Pitzer College!

IAbstract. Given a knot K with a Seifert surface X, I dream
that the well-known Seifert linking form Q, a quadratic form on
\H (%), has plenty docile local perturbations P, such that the for-
mal Gaussian integrals of exp(Q + P,) are invariants of K.

In my talk I will explain what the above means, why this dream
is oh so sweet, and why it is in fact closer to a plan than to a
delusion. Joint with Rolan

The Seifert-Alexander Formula. With
P, Q € H\(2), i
Q(P,G) = T2 Ik(P*,G) — T™'?Ik(P,G™)
A(K) = det(Q)
dp dx exp Q(p, x) = det(Q)”

2H, (%) ' o
(where = means “ignoring silly factors™).

¥
1

IPerturbed Gaussian Integration. We say
that P, € eQ[xy,...x,][€] is M-docile (for |

.....

Theorem (Feynman). If Q is a quadratic in xy, ..

., X, and P, is
docile, set Z, = fRn dxy---x, exp(Q + P¢). Then every coeffi-
cient in the e-expansion of Z, is computable in polynomial time

_E%'E“Dream. There is a similar perturbed Gaussian integral formu-
EF%=la for 6, but with integration over 6H,(X). The quadratic Q will

be the same as in the Seifert-Alexander formula (but repeated 3
times, for each 7,). The perturbation P, will be given by low-
degree finite type invariants of curves on X (possibly also depen-
dent on the intersection points of such curves, or on other infor-
mation coming from X).

I[Evidence. Experimentally (yet undeniably), deg 6 is bounded by
the genus of . How else could such a genus bound arise? Further
ery strong evidence comes from the conjectural (yet undeniable)

integral [Oh] and/or as the “solvable approximation” of the uni-
ersal sl3 invariant [BN1, BV2].

hy so sweet? It will allow us to prove the aforementioned ge-
nus bound and likely, the hexagonal symmetry. Sweeter and dre-

Mamier, it may allow us to say something about ribbon knots!

+ @+

'What’s “local”? How will we compute? The Bedlewo Alexan-
der formula: Let F be the faces of a knot diagram. Make an F' X F
matrix A by adding for each crossing contributions

where L(X,-Sj) = L), .E(Cf) = olUCD.
L(X;;) = xi(pis1 — pi) + xj(pje1 — D))
+(T* — Dxi(pis1 — pjs1)
+§ (Xi(Pi - p)) ( (T:-Z_(ll)ffj;j)) -1
L(CY) = xi(pi+1 — pi) + €p(1/2 = xip;)
0(T,, T>) is likewise, with harder formulas

S~—

and integration over 6F.

in n. in fact, -1-1 20 1 -100
-1 -1 -1
AV2Z, = <eXP Q_l(ax»), exp Ps> = msum O\teer:ll\p'ajrin@ K 0000 K — 0000
' LG o —tol L U721 10
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O(T. 1) is like that! With € = 0, P, P at rows / columns (i, j, k, ). Then A = det’ ((TI/ZA - T‘I/ZA)/Z).
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(the Seifert ai'gorithm by Emily Redelmeier) |

IExpect the like for 8! Expect more like 8! Topology first! Resist

the tyranny of quantum algebra!
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Right. The 132-crossing torus knot 75,7 (more at wef/TK).
Below. Random knots from [DHOEBL], with 101-115 crossings
more at wef3/DK).
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/Pitzer-250308.
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The Strongest Genuinely Computable Knot
Invariant Sinee In 2024

The First International On-line Knot Theory Congress
February 1-5, 2025

Dror Bar-Natan

Abstract. “Genuinely computable” means we have computed it for random knots
with over 300 crossings. “Strongest” means it separates prime knots with up to 15
crossings better than the less-computable HOMFLY-PT and Khovanov homology
taken together. And hey, it's also meaningful and fun.

Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint with van der Veen.

weBi=http://drorbn.net/ktc25

Happy birthday, dear Lou!

Lou Kauffman at MSRI, March 1991

weBi=http://drorbn.net/ktc25

The Strongest Genuinely Computable Knot
Invariant Sinee In 2024

Strongest? Genuinely Computable?

weB:=http://drorbn.net/ktc25

Genuinely Computable. Here's ©
on a random 300 crossing knot (from
[DHOEBL]). For almost every other knot
invariant, that's science fiction.

Gukov: Should take 300 years if Moore's
law persists.

Us: A few hours on a laptop, 0 GPUs.

weBi=http://drorbn.net/ktc25

These slides and the code within are online at wef:=http://drorbn.net/ktc25

(I wish all speakers were making their slides available before / for their talks).

(I'll post the video there too)

A paper-in-progress is at weP/Theta.

If you can, please turn your video on!

weB:=http://drorbn.net/ktc25

Acknowledgement.
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Strongest.

Testing © = (A, 0) on prime knots up to mirrors and reversals, counting the
number of distinct values (with deficits in parenthesis): (p1: [Rol, Ro2, Ro3, Ov, BV1])

knots | (H,Kh) | (A,p1) ©=(A,0) | (A,0,p2) | all together

\
reign ‘

| 2005-22 | 2022-24 2024 | 2025- |
xing <10 [ 249 | 248(1) [ 249 (0) 249 (0) 249(0) 249 (0)
xing <11 | 801 |771(30) [787 (14) 798(3) | 798(3) | 798 (3)
xing <12 | 2,977 | (214) (95) (19) (10) (10)
xing <13 | 12,965 | (1,771) | (959) (194) (169) (169)
xing <14 | 59,937 | (10,788) | (6,253)  (1,118) (982) (981)
xing <15 [ 313,230 | (70,245) | (42,914)  (6,758) | (6,341) (6,337)

weBi=http://drorbn.net/ktc25
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Fun. There's so much more to see in
2D pictures than in 1D ones! Yet almost
nothing of the patterns you see we know
how to prove. We'll have fun with that
over the next few years. Would you join?

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Random knots (from [DHOEBL]) with 101-115 crossings:

ttp://drorbn.net/ktc25

weBi=http://drorbn.net/ktc25

Meaningful.

0 gives a genus bound (unproven yet with confidence). We hope (with reason) it
says something about ribbon knots.

weBi=http://drorbn.net/ktc25

Preparation. Draw an n-crossing knot K 5 BS
as a diagram D as on the right: all cros-

sings face up, and the edges are marked

with a running index k € {1,...,2n+ 1} 4
and with rotation numbers .

S

weBi=http://drorbn.net/ktc25

The Rolfsen Table:
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The torus knot TKyy)7:

weBi=http://drorbn.net/ktc25

Convention.

T, T1, and T, are indeterminates and T3 == T1 T».

weBi=http://drorbn.net/ktc25

F e
_image credits: image Credis:
diamondtraffic.com all-E

Model T Traffic Rules. Cars always drive forward. When a car crosses over a
sign-s bridge it goes through with (algebraic) probability 7° ~ 1, but falls off with
probability 1 — 7° ~ 0. At the very end, cars fall off and disappear. On various
edges traffic counters are placed. See also [Jo, LTW].

Tt1-7171

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Given crossings ¢ = (s, 1,), co = (S0, fo,Jjo), and ¢1 = (s1, i1, /1), let

D \/
\/; Fi(c) = s[1/2 — gsii + T3 guigzji — T583j82ji — (T3 — 1)83ii&2ji
= H(T3 — D)evjigsji — 81ii&2j + 283ii82j + 81ii&3jj — £2ii3jj)
s
Definition. The traffic function G = (gas) (also, the Green function or the T (T3 = 1)T5 (g3ji81)i — &2jiguji + T581ji&2ji)
two-point function) is the reading of a traffic counter at 3, if car traffic is injected 2 g s s
at a (if @ = 3, the counter is after the injection point). There are also model-T, + (T3 — 1) (g3ji — T3guiigsji + &2ijgzji + (T5 — 2)g2ji83)i)
traffic functions G, = (guap) for v =1,2,3. — (T3 = 1)(T5 + 1)(T5 — 1)gujigsjil
Example. s(TO — 1)(T5 — 1)g,i83)i
Falco, ) = 2= DU~ Daio8sin (T3 g2ivio + 82juio — T3°&2ivip — 82ivjo)

-1
> pzo(l— T) =T 2

1 7Tt 1
1 o 7! 1) F3(ok, k) = @il(gsin — 1/2)
% H\:@* H\J\QQ-F (0 0 1

(Computers don't carel)

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25
Main Theorem. Lemma 1.
The following is a knot invariant: (the A, are normalizations discussed later)
0(D) = A1AsA3 <Z Fi(c) + Z Fa(co, c1) + Z Fa(px, k ) ) The traffic function g,z is a “relative invariant”:
c 0,C1

W\W

(There is some small print for R1 and R2 which change the numbering of the edges and sometimes

collapse a pair of edges into one)

If these pictures remind you of Feynman diagrams, it's because they are Feynman
diagrams [BN2].

weB:=http://drorbn.net/ktc25 weB:=http://drorbn.net/ktc25

Proof. Lemma 2.

j+‘/l‘+
With k* : " " ; oy i/ N

=k + 1, the “g-rules” hold near a crossing ¢ = (s, 1, ):
1-TP+T1-T)L1-T)T LT?
gis =8&p+0jp &ip= T grp+ (1= T°)gp+dip Gt p=02np

ait = T°8ai + 0ait  Baj+ = Baj + (1= T°)8ai + dajr a1 = da1

UL

weB:=http://drorbn.net/ktc25 weB:=http://drorbn.net/ktc25

Corollary 1.

G is easily computable, for AG = | (= GA), with A the (2n+1) x (2n+1)
identity matrix with additional contributions: And so,
A |col it col j*

c=(sij) s rowi| —T° T°_-1 Lro1 T = Lot
row j 0 -1 01 7T+l TP—T+1  TP—T+1 T2}§+1 1
For the trefoil example, we have: 7& c— 0 0 2—7_"_+1 T2—1T+1 T2,1T+1 TLTT+1 1
- 0 0 —T+1 T(QFTIJS%_ T2-T+1 T?—TT+1 1
17 - 1
(1) _17- 01 8 TO_ 1 8 g Y 0 0 1 Tt a7 L
= o hoo | 00 0 0 1
00 1 =T 0 0 T-1 > i 00 0 0 0 0 1
A= 0 0 0 1 -1 0 0 s 3 3
0 0 T—=1 0 1 =T 0 vy
0 0 0 0 0 1 -1
o0 o o o0 o0 1 1,

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Note.

The Alexander polynomial A is given by

A = TEP=M/2 det(A),

c,a:ngk, W:ZS.
k c

We also set A, := A(T,) for v = 1,2,3. This defines and explains the
normalization factors in the Main Theorem.

with

weBi=http://drorbn.net/ktc25

Invariance under R3

This is Theta.nb of http://drorbn.net/ktc25/ap.
Once[<< KnotTheory™ ; << Rot.m; << PolyPlot.m];

Loading KnotTheory™ version of October 29, 2024, 10:29:52.1301.
Read more at http://katlas.org/wiki/KnotTheory.

Loading Rot.m from http://drorbn.net/ktc25/ap to compute rotation numbers.

Loading PolyPlot.m from
http://drorbn.net/ktc25/ap to plot 2-variable polynomials.

T3=T1Ty;
CF[& ] := ExpandeCollect[&, g, F] /. F » Factor;

weBi=http://drorbn.net/ktc25

8i ,j :=If[i===7,1,0];

8Rs i 5 t={
8y s P Byits*+6i5s By is T Euirs+ (1-T) Bjrs + Siss
€ ait T, 8rai+6ai%s By a j* > Braj + (1 - Tsy) 8rai + 6aj*

}

weB:=http://drorbn.net/ktc25

The Main Program
e[k ] := Modulel{CS, ©, n, A, A, G, ev, 6},
{Cs, ¢} =Rot[K]; n=Length[Cs];
A = IdentityMatrix[2n+1];
5 5 8 . q o -T° T° -1
Cases[Cs, {s_, i, j_} = (A[u, G}, {i+1, j+1}] += ( o 1 ))],
A = T(-Total[v]-Total [CS[ALL,1]1) /2 pat [A];

G = Inverse[A];
ev[& ] :=Factor[& /.8, ,u,s » (Gla, AT /. T-T,)1;

o= ev[Z=1 Fi[CskD1]s
6 += EV[ZHZH F2[CsIk1], CsEk211];

6 4= ev[Z'::ngw[[k]], k1]s

Factor@{s, (A/.T-T1) (A/.ToTy) (A/.T>Ts) e}];

weBi=http://drorbn.net/ktc25

Corollary 2.

Proving invariance is easy:

Kt ﬁ( it D D
L " ?
+ Ks = KS
N N
m n m n
7 Nk

weB:=http://drorbn.net/ktc25

Fil{s_, 1., 7 }1=
cF[
S (1 /2 - g3ii + T3 8aii 824 - B1ii 8255 — (Ti = 1) 82ji 83ii + 2 82jj B3ii -
(1 = T§) 8241 8341 - 821 8335 — T3 824 833 + Baii 8345 +
((T3-1) gags (T3° 8230 - T5 8235 + T3 €3y3) +
(T5-1) 8351 (- T3 8115 - (Ti-1) (T3 +1) gagi + (T3 - 2) 8255 + 8215) ) /
(13-2))1s
F[{s6_, i0_, jo_}, {s1_, 11_, j1_}] :=
CF[s1 (T57-1) (T3 -1)™* (75" - 1) £1,1,10 83, 50,12
( (T§9 82,i1,i0 - gz,u,je) = (Tie 82,j1,i0 - Sz,j1,je) ) ]

F3[o_, k.1 =-0/2+¢83k;

weBi=http://drorbn.net/ktc25

D

DSum[Cs__ ] :=Sum[Fy[c], {c, {Cs}}] +
sum[F,[c@, cl1], {c@, {Cs}}, {cl, {Cs}}]

lhs = DSum[{1, j, k}, {1, i, k"}, {1, i*, %}, {s, m, n}1//.
8R1,5,k UBRy,i,kr UBRy,i+,5+5

rhs = DSum[{1, i, j}, {1, i*, k}, {1, 3", k™}, {s, m, n}1 //.
8Ry,1,5 U8Ry, 1%,k U8Ry, 3+, 3

Simplify[lhs == rhs]

True

weP:=http://drorbn.net/ktc25

The Trefoil Knot

©[Knot[3, 1]] // Expand
1 1 1 1 1 1 T T
{71+—+T,777T§777 + + +J+J+T§T27T§+T1T§7T§T§}
T LK TOTT OTMT3 T, T, Ty
PolyPlot[@©[Knot[3, 1]], ImageSize - Tiny]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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The Conway and Kinoshita-Terasaka Knots

=

= S e
. 3

e -

GraphicsRow[PolyPlot[@[Knot[#]], ImageSize » Tiny] & /e

{"K11n34", "K11n42"}]

B

weB:=http://drorbn.net/ktc25

weB:i=http://drorbn.net/ktc25

The Torus Knots TK13/2, TK17/3, TK13)5, and TK7’6

GraphicsRow[ImageCompose [
PolyPlot[@[Torusknot ee #], ImageSize - 480],
TubePlot [TorusKnot @e #, ImageSize -» 240],
{Right, Bottom}, {Right, Bottom}
1&/@{{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

(Note that the genus of the Conway knot appears to be bigger than the genus of

Kinoshita-Terasaka)

Questions, Conjectures, Expectations, Dreams.

Conjecture 2.

On classical (non-virtual) knots, 6 always has hexagonal (D) symmetry.

Conjecture 4.

weBi=http://drorbn.net/ktc25 weB:=http://drorbn.net/ktc25

Question 1.

What's the relationship between © and the Garoufalidis-Kashaev invariants
[GK, GL]?

weBi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Conjecture 3.

6 is the €' contribution to the “solvable approximation” of the sk universal
invariant, obtained by running the quantization machinery on the double

D(b, b, €d), where b is the Borel subalgebra of s, b is the bracket of b, and ¢ the
cobracket. See [BV2, BN1, Sch]

wePi=http://drorbn.net/ktc25 weBi=http://drorbn.net/ktc25

Fact 5. 0 has a perturbed Gaussian integral formula, with integration carried out
over a space 6E, consisting of 6 copies of the space of edges of a knot diagram D.
See [BN2].

0 is equal to the “two-loop contribution to the Kontsevich Integral”, as studied by

Garoufalidis, Rozansky, Kricker, and in great detail by Ohtsuki
[GR, Rol, Ro2, Ro3, Kr, Oh].

Conjecture 6. For any knot K|, its genus g(K) is bounded by the Ti-degree of 6:
2g(K) > degr, 0(K).

Conjecture 7. 0(K) has another perturbed Gaussian integral formula, with
integration carried out over over the space 6H;, consisting of 6 copies of H;(X),
where ¥ is a Seifert surface for K.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.
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Question 8.

Is there a direct quantum field theory derivation of §7 Perhaps using the
e-expansion (at constant k!) of Chern-Simons-Witten theory with gauge group
g5 = D(b, b, ed) with some Seifert-surface-dependent gauge fixing?

weB:=http://drorbn.net/ktc25

Dream 10.

These invariants can be explained by something less foreign than semisimple Lie
algebras.

weBi=http://drorbn.net/ktc25

Thank You!

weBi=http://drorbn.net/ktc25
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Expectation 9.

There are many further invariants like 6, given by Green function formulas and/or
Gaussian integration formulas. One or two of them may be stronger than 6 and as
computable.

weB:=http://drorbn.net/ktc25

Dream 11.

0 will have something to say about ribbon knots.

weBi=http://drorbn.net/ktc25
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Dror Bar-Natan: Talks: Toronto-241030:

Thanks for bearing with me!

The Strongest Genuinely Computable Knot Invariant in 2024

wep:=http://drorbn.net/to24 [m]

=]

Abstract. “Genuinely computable” means we have co-
mputed it for random knots with over 300 crossings.
“Strongest” means it separates prime knots with up to
15 crossings better than the less-computable HOMFLY-
IPT and Khovanov homology taken together. And hey,
it’s also meaningful and fun.

Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint w-
ith van der Veen.
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Strongest. Testing ® = (A, 6) on prime knots up to mirrors and |

van der Veen

_diagram D as on the right: all crossings face up,
‘land the edges are marked with a running index

Preparation. Draw an n-crossing knot K as a

ke {l,...,2n + 1} and with rotation numbers .
Model 7" Traffic Rules. Cars always drive fo-
rward. When a car crosses over a sign-s brid-
ge it goes through with (algebraic) probability
T* ~ 1, but falls off with probability
1 —-T° ~ 0. At the very end, cars
fall off and disappear. On various ed-
ges traffic counters are placed. See
also [Jo, LTW].

@4 =-1

_ image credits:
dliamondtraffic.com

reversals, counting the number of distinct values (with deficits in |-

(®IBI® @815
si@isigielfie)

s

parenthesis): (011 [Rol, Ro2, Ro3, Ov, BV1]) o7 T -7
knots | (H,Kh) | (A,p1) | ©®=(A,0) | together g X ] =
oo L oty AN Py
Xing < .. . _
xing <11 | 801 | 771(30) | 787(14) | 798 3) | 798 (3) | ¢finition. The traffic function G = (8ap) (also, ™™ \/
xing <12 | 2,977 214) 95) (19) (1s) the Green function or the two-point function) is
xing S ERIND) 965 | (1,771 (959) (194) (185) the reading of a traffic counter at g, if car traffic =
xing < 14 | 59,937 | (10,788) | (6,253) (1,118) (1,062) Iis injected at @ (if @ = B3, the counter is after the injection point).
xing < 15 | 313,230 | (70,245) | (42,914) (6,758) (6,555) [There are also model-T, traffic functions G, = (gyap) for v =
Genuinely Computable. Here’s © | 1,2,3. Example.
on a random 300 crossing knot (from , Ypeo-Ty =771 1! 0 1 T‘: 1
[DHOEBLY]). For almost every other 1 QJ' 0 @ 0 1 G=|0 T 1
invariant, that’s science fiction. =1 —4 — 0 0 1
[Fun. There’s so much more to see in Don’t Look.
2D pictures than in 1D ones! Yet al- Ri(©)=s[1/2 = gsi + Tguigaji = T383j582j — (T3~ Dgigai
most nothing of the patterns you see +(T3—1)g2)ig3ji — 81ii82jj + 283ii82jj + 81183)j — g2iig3jj]
we know how to prove. We’ll have LS [(Tf DT ( s )
: TR - 83jj81ji — 82jj81ji 81,i82ji
fun with that over the next few years. Ty—1 L1 T2 \OIS T SIS T F2S 162
Would you join? +(T3-1 (g3ji = T581i83ji + 82ij83ji + (T2S—2)gzjj83ji)
Meaningful. 6 gives a genus bqund (unprovep yet with .conﬁ— (T 1)1 +l)(T§—1)g1,-,-g3j,~]
dence). We hope (with reason) it says something about ribbon ST =T =g i g3
knots. Riz(co, c1)= —— Ti. ] S (15" 8y + 8271jo — T 8271i0 — &2i1jo)
Conventions. T, T, and T, are indeterminates and T3 = T, 15. L k) = o(=1/2 + g30)
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Theorem. With ¢ = (s,1,j), co = (S0, 10, jo), QZI
and c¢; = (sy, i1, j1) denoting crossings, there is

a quadratic Ry1(c) € Q(T\)[gvap : @.B € {i, j}], [; j
a cubic Riz(co,c1) € Q(T))[8vep : @B € {lo,Jo,ll,Jl}] and a
linear I'; (¢, k) such that the following is a knot invariant:

0D) = Aifads (Z Riy(0) + ZRu(co,cl) + Zrl(wk,lo)

normdhzatlon ¢ co-C1

see later .-

D 33
SN 8B N
o Jo i1

6,
This picture gave the invariant its name
If these pictures remind you of Feynman diagrams, it’s because

they are Feynman diagrams [BN2].

Questions, Conjectures, Expectations, Dreams.

Question 1. What’s the relationship between ® and the
Garoufalidis-Kashaev invariants [GK, GL]?

Conjecture 2. On classical (non-virtual) knots, 6 always has he-
xagonal (Dg) symmetry.

Conjecture 3. @ is the €' contribution to the “solvable appro-
ximation” of the s/3 universal invariant, obtained by running the
quantization machinery on the double D(b, b, €5), where b is the
Borel subalgebra of sl3, b is the bracket of b, and § the cobracket.
See [BV2, BN1, Sch]

Conjecture 4. 0 is equal to the “two-loop contribution to the Kon-
tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,
and in great detail by Ohtsuki [GR, Rol, Ro2, Ro3, Kr, Oh].
[Fact 5. 6 has a perturbed Gaussian integral formula, with inte-
gration carried out over over a space 6 F, consisting of 6 copies of

Lemma 1. The traffic function gaﬁ is a “relative invariant”:

he space of edges of a knot diagram D. See [BN2].

Conjecture 6. For any knot K, its genus g(K) is bounded by the
T'-degree of 0: 2g(K) > degy, 6(K).

Conjecture 7. 6(K) has another perturbed Gaussian integral for-
mula, with integration carried out over over the space 6H;, con-
sisting of 6 copies of H;(X), where X is a Seifert surface for K.
I[Expectation 8. There are many further invariants like 6, given by
Green function formulas and/or Gaussian integration formulas.
One or two of them may be stronger than 6 and as computable.
Dream 9. These invariants can be explained by something less
foreign than semisimple Lie algebras.

Dream 10. 6 will have something to say about ribbon knots.

[BN1] D. Bar-Natan, Everything around sl3, is DoPeGDO. So References.
what?, talk in Da Nang, May 2019. Handout and video at weB/DPG.

Lemma 2. With k* := k + 1, the “g-rules” hold j”yi+
near a crossing ¢ = (s, i, ]?: ‘ ; N j
gis=8ip+0jp gp=T'grp+(1=T")gjp+0big gonp=0ump
Sait = ngai + Oqi+ 8ajt = &aj T a- Ts)gm‘ + 6&]*‘ 8a,1 = 611,1
Corollary 1. G is easily computable, for AG = I (= GA), with A
the (2n+1)x(2n+1) identity matrix with additional contributions:

A ‘ col it col j*
c=(s,i,j)—» rowi | -T* T°-1
IFor the trefoil example, we have: row.J 0 -1
1 -T 0 0O T-1 0 0
0 1 -1 0 0 0 0
0 O 1 -T 0 0 T-1
A=]10 0 1 -1 0 0 s
0O 0 T-1 O 1 -T 0
0 O 0 0 0 1 -1
0 O 0 0 0 0 1
1 T 1 T 1 T 1
1 T T T2
0 1 T2-T+1 T2-T+1 T>-T+1  T?-T+1 1
0 O . 1 . T - . T - 2T - 1
G = 0 0 T 1—_E_+1 T —1T+ T —1T+ T —7T+ ]
T2-T+1 &, 2-T+1 -T+1
0 0 1-T (T 1) 1 T 1
T2-T+1  T?2=T+1 T2-T+1 T2-T+1
0 O 0 0 0 1 1
0 O 0 0 0 0 1

[BN2] —, Knot Invariants from Finite Dimensional Integration, talks in Bei-
jing (July 2024, wef/icbs24) and in Geneva (August 2024, wef/ge24).

[BV1] —, R. van der Veen, A Perturbed-Alexander Invariant, Quantum Topo-
logy 15 (2024) 449-472, wef3/APAL

[BV2] —, —, Perturbed Gaussian Generating Functions for Universal Knot
Invariants, arxiv:2109.02057.

[DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattachary-
ya, D. Lei, and others, Random Knots: A Preliminary Report, lecture notes
at we3/DHOEBL. Also a data file at wef3/DD.

[GK] S. Garoufalidis, R. Kashaev, Multivariable Knot Polynomials from Brai-
ded Hopf Algebras with Automorphisms, arxiv:2311.11528.

[GL] —, S. Y. Li, Patterns of the V,-polynomial of knots, axiv:2409.03557.

[GR] —, L. Rozansky, The Loop Expansion of the Kontsevich Integral, the
Null-Move, and S -Equivalence, axiv:math.GT/0003187.

[Jo] V. FE R. Jones, Hecke Algebra Representations of Braid Groups and Link
Polynomials, Annals Math., 126 (1987) 335-388.

[Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky’s Rationa-
lity Conjecture, arxiv:math/0005284.

[LTW] X-S. Lin, E. Tian, Z. Wang, Burau Representation and Random Walk
on String Links, Pac. J. Math., 182-2 (1998) 289-302, arxiv:q-alg/9605023.
[Oh] T. Ohtsuki, On the 2—loop Polynomial of Knots, Geom. Top. 11 (2007)

1357-1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,
Ph.D. thesis, University of North Carolina, Aug. 2013, wef3/Ov.

[Rol] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones
Polynomial and Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys.
175-2 (1996) 275-296, arxiv:hep-th/9401061.

[Ro2] —, The Universal R-Matrix, Burau Representation and the Melvin-

Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1

(] 998) 1-31 N arXiv:q-Ellg/9604005.

Note. The Alexander polynomial A is given by
A = T2 det(A), withgp = Y, o, w= .5
We also set A, := A(T,) forv =1,2,3.

[Ro3] —, A Universal U(1)-RCC Invariant of Links and Rationality Conjectu-
re, arxiv:imath/0201139.

[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis,

Universiteit Leiden, September 2020, wef/Scha.

Video and more at http://www.math.

toronto.edu/~drorbn/Talks/Toronto-241030.
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Corollary 2. Proving invariance is easy: The Main Program

Vo jH it D Vaad jH i

\

D ®el[K_] :=Modu1e[{Cs, ©, n, A, A, G, ev, 6},

2 {Cs, ¢} =Rot[K]; n = Length[Cs];
Ks = Ks A = IdentityMatrix[2n +1];
N h Cases[Cs, {s_,1,73 }=»
m n m n
9 q . -T°T°-1
(Aneis 1, tie1, Gempne= (T 1H))]s
Invariance under R3 A = T(-Totalle]-Total[CSIALL1I1) /2 pat [A] ;
This is Theta.nb of http://drorbn.net/to24/ap. G =Inverse[A];
©®O0nce[<< KnotTheory  ; << Rot.m; << PolyPlot.m]; evig ] :=
Factor[& /.8, ,a,s » (Gla, B1/.T->T,)1;
©T3=T1Ty; 6= eV[Z:1=1 22:1 Ri2 [CsIk1], CsOk2D1];
OCF[& ] := e+=ev[>" RulCsIkI1];

Module| {vs = Union@Cases[& o S, C
[{ [£, 8 5 o], ps, €}, . eV[Z::1I'1[(P|[k]], k]];

Factore
(&, (A/.ToT1) (A/.T>Ty) (A/.ToTs) e}];

Total[CoefficientRules [Expand[£], vs] /.
(ps_ »c_) =» Factor[c] (Timeseevs™)] |;

®Rua[{s_, 'i_: .7_]'] =

CF[ The Trefoil, Conway, and Kinoshita-Terasaka
s (1 /2-g3i: + T3 8141 824 - B1ii 8245 - ©e[Knot[3, 1]] // Expand Py
(T2 - 1) 8241 83ii + 2 8255 8311 - (1 - T3) 8241 B3ji - o 1 1, 1 1 1 e )
82ii 8335 - T2 82ji 83jj + B1ii 8335 + _{_1 T - T_% T T_§ B IERE " T, T2 " .-":; I
((T3-1) 8135 (73° 8255 - T3 8255 + T5 8353) + 1 T, T, s o -H: “-"
s +—+—+T T, - T+T1T -7 T R
(T3-1) 33 T, T, T 2 } =t
(1-T38us- (T3-1) (T3+1) gajs + © GraphicsRow[PolyPlot [@[Knot[#]]] & /@ ::x'_i" ! ;
(T3-2) 8255+ 8215) ) / (T3-1)) ]5 {"3_1", "K11n34", "K11n42"}] g

© P e oy b "IN _
CF[s1 (T3 -1) (73" -1)™* (75" - 1) 4,1, 10 83, jo,11

( (Tie 82,i1,i0 - 82,i1,50) - (Tie 82,51,10 - 82,51,50) ) |
OTile , k.1 =-0/2+¢8;
©®6; ,5 :=If[i===7,1,0]; *
R ,i 5 = {

8y js P Bvj*s + 65z,
8 s T8 s+ (1-T5) 8ujes+ 6, (Note that the genus of the Conway knot appears to
v_iB_ ¢ v v

8 ait T, Brai+baits be bigger than the genus of Kinoshita-Terasaka)

8wt P Brajt (1-T5) Brui + 6.5t Some Torus Knots

} ©TKs = {{13, 2}, {17, 3}, {13, 5}, {7, 6}};
©DSUm[Cs ] := Sum[Ry[c], {C, {C5}}] + GraphicsRow[PolyPlot[®[Torusknotee #]] & /@ TKs]

Sum[Ry, [cO, c1], {cO, {Cs}}, {c1, {C5}}] GraphicsRow[TubePlot [Torusknot @ee #] & /@ TKs]

s . + PR o
lhs =DSum[ {1, j, k}, {1, i, k™}, {1, i*, "}, _ III

{s, m, n}] //. 8Ry 5,k UBRy, i kir UBRy, i+ 4+5

rhs =DSum[{1, i, j}, {1, i*, k}, {1, 3, k*}, @
{s, my n}] //.8Ry ;5 UBRy s+ ik UBRy, 5+ ,k*5

Simplify[lhs == rhs]

OTrue ﬁq
' W
Kl S %i.,.
{;?’1 uff; E’F"wx : :
Rt LEELY

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-241030.

11


http://www.math.toronto.edu/~drorbn/Talks/Toronto-241030

The 132-crossing torus knot 72,7: (many more at wef/TK)

O O 0 #H 8 M SFEFsrs sl e B BB B o D0
T 4 & 8 H H BRI FEH HH B O D D
G 9 0 @ AR AR BB S D D D

A BB ORI RE .Y
R R EE Y IR R L R R N
I OGO BD IR T T
eSS OTFANFNONNRDDDRIDE WL
LA d PR ROSEARMUHBADDRILS S L %
s e A FFESOOSSNMBDBDDBDDDSS T "..".

i

A R X e 7

o

« % %% % %50 DUV PO S P L . .
ALY TRAR AR OO0 S P P P2
"% %% T B CABWMNMINNRDOEE P IE

'R R EARMAM AL R
“T1TENC LAV WRRNINNN DO S
R I R T L LI T Y AR e
2LV ARNNNNUNIN NS e e e
R RN TR T R R R
00 EBEHEBEHIMIIIIHM R o0 A
- R R EIRTEI IR IR I NN E-NE-NE-
O & O HHH iR I H B S D SO

L]
Y
"
#

Random knots from [DHOEBL], with 50-73 crossings:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-241030.
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Dror Bar-Natan: Talks: Geneva-2408:

IAbstract. For the purpose of today, an “I-Type Knot
[nvariant” is a knot invariant computed from a knot
diagram by integrating the exponential of a pertur-
bed Gaussian Lagrangian which is a sum over the
features of that diagram (crossings, edges, faces) of
locally defined quantities, over a product of finite di-
mensional spaces associated to those same features.
Q. Are there any such things? A. Yes.

Q. Are they any good?
CPU cycle, and are excellent in other ways too.

rigorous.
Q. But integrals belong in analysis!
A. Ours only use squeaky -clean algebra.

Knot Invariants from Finite Dimensional Integration

joint with
R. van der Veen

A. They are the strongest we know per

Q. Didn’t Witten do that back in 1988 with path integrals?
IA. No. His constructions are infinite dimensional and far from

-

wef:=http://drorbn.net/ge24

Thanks for inviting me to Geneva! E%E
[=]::%

Theorem. Z is a knot invariant. Proof. Use Fubini (details later).

2| (G-I
A-01 @y~

(Alternative) Gaussian Integration. Gauss
Goal. Compute

1 ..
f dxexp (——a”x,-xj + V(x)).
if convergent) R” 2

. ;
Solution. Set Z,(x) := /l”/zf dyexp (—ﬁa”y[yj + V(x+ y)).

Then Z;(0) is what we want, Zo(x) = (detA)~"/?exp V(x), and
with g;; the inverse matrix of ¢/ and noting that under the dy

Knots.

integral 8, = 0,

Something simple:
numbers, polynomials,
matrices, etc.

RI
\> p > invariants
/

/

The Good. 1. At the centre of low dimensional topology.

2. “Invariants” connect to pretty much all of algebra.

The Agony. 1&2 don’t talk to each other.

e Not enough topological applications for all these invariants.

e The fancy algebra doesn’t arise naturally within topology.

— We’re still missing something about the relationship between
knots and algebra.

1
Egijaxiaij/l(x)

1 1 ..
3 f dy gij(0y,—0y,)(0x,—0y,) exp (_ﬁa”)’i)’j + V(x+ )’))

1 , 1,
2/12 fdy(gl/a a”yl yj +/lgtjaj)exp(_ﬁaJYly/ + V(X+y))

1 i 1
=5e f dy (a Ty + /ln) exp (_ﬁa Tyiyi+ Vix + y))
1 = 8,12/1()6).
Hence (*) 0WZalx) = _gijax,-aszxl(x)’

and therefore Za(x) = (det A)"V2exp ( 8ii0x, 6x!) exp V(x).

The sléEZ Example. With 7 an indeterminate and with €> = 0:

By  —> f LX) LX) LX) LC)
! n R}, measure on R is (27)~!/2-standard
3| where L(X3) = T2 and L(C?) =
L 7e12HCD | and
737 L(X}}) = xi(pisv1 — pi) + xj(pjr1 — D))
+(T° = Dxi(pis1 = Pj+1)
a2 €s (T* — Dxip;
% +7(xi(pi _pj)( +2(1 —ijpj))_ )
L(CY) = xi(pis1 = pi) + €p(1/2 = xipi)
So Z = T §e"dp,...dprdx...dx;, where L(Q) =

7

Zizlxi(piH_Pi) + (T=D(x1(p2 = pe)+x6(p7 = p3)+x3(pa = ps))

x1(p1 — ps) (T — Dxips + 2(1 — xsps)) — 1

€| +x6(pe — p2) (T — Dxgp2 + 2(1 = x2p2)) — 1

2| +x3(p3 — p7) (T = Dxzp7 + 2(1 = x7p7)) — 1

+2X4p4 -1

(T =1+ T exp(e-

A~ exp (E L2401

o1 1s Rozansky-Overbay’s polynomial
[R1, R2, R3, Ov, BV1, BV2].

and so Z = =

(T—2+T’1)(T+T’1))
(T—1+T-1)?

Here A is Alexander’s polynomial and

Aysuezoy
KeqI1aAQ

'We’ve just witnessed the birth of “Feynman Diagrams”.
[Even better. With Z; := log( VdetAZ,), by a simple

™

substitution into (*) we get the “Synthesis Equation”: "'};eynman
Zo=V. 9Zi=5 Z 86 (0 Zi + (04200, 20)) =: F(Zy)
an ODE (in A1) whose solutlon is pure algebra.
IPicard Iteration (used to prove the existence and u- i‘h
niqueness of solutions of ODEs). To solve d,f) = | & k-
IF(f,) with a given fy, start with fp, iterate f ;
fo + _gl F(fdA, and seek a fixed point. In our cases,

Picard

it is always reached after finitely many iterations!

Definition. f : The result of this process, ignoring the converge-
nce of the actual integral.

Strong. The pair (A, p;) attains 53,684 distinct values on the
59,937 prime knots with up to 14 crossings (a deficit of 6,253),
whereas the pair (H = HOMFLYPT polynomial, Kk = Khovanov
Homology) attains only 49,149 distinct values on the same knots
(a deficit of 10,788). The pair (A, 6), discussed later, has a deficit
of only 1,118.

IYet better than (H, Kh) and other Reshetikhin-Turaev-Witten i-
nvariants and knot homologies, A, p;, and 6 can be computed in
polynomial time (and hence, even for very large knots).

So ugly as the formulas may be (and 6’s formulas are uglier),
these invariants are the best we have!

Acknowledgement. This work was supported by NSERC grant
RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

2024/08/13@02:08

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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Implementation (see IType.nb of wef/ap).
©O0nce[<< KnotTheory ; << Rot.m];

©jFofGE [-i&x] d{€}

1
_CI_C:\dr‘or‘bn\AcademicPensieve\Pr‘ojects\KnotTheor‘y\KnotTheor‘yg]E [— — (a-X) 2 u]
2

O Loading KnotTheory™ version
of February 2, 2020, 10:53:45.2097.
Read more at http://katlas.org/wiki/KnotTheory.

D Loading Rot.m from
http://drorbn.net/AP/Talks/Geneva-2408
to compute rotation numbers.
®CF[w_. & E] :=CF[w] «CF /@ &;
CF[& List] :=CF /@ &;
CF[&£_] := Module[{vs, ps, C},
vs =Cases[&, (x| p|E|x|g) ,»|U{e};
Total[CoefficientRules [Expand[£], vs] /.

So we’ve tested and nearly proven the Fourier inversion formula!

1 b
©p.-2 {X1, Xz}-(z )-{Xn X2} + {€1, &2} {X1, X2};
2 c

Z12 = j]E [L] d{x1, X2}

Q| <, bae g ]
2 (—b2+a c) b2-ac 2 (—b2+a <)

\-b%2+ac

©{z1 - J]E[L] d{xi}, Z12 = j21 dl{xz}}

b2, 2 2
(ps_—»c_) » Factor[c] (Timeseevs™)] |; a ]E[— (-b Zac> 2 _bxpé& % + Xy §2]
a a a
- - - - — True
Integration using Picard iteration. The core is in yellow and { \Ja ’ }

hacks are in pink.
@E /:E[A ]~<E[B ] :=E[A+B];
® $7 = Identity; (» The Wisdom Projection )
® Unprotect[Integrate];
jw_. E[L_]d(vs_List) :=
Module[{n, Le, Q, A, G, Z0, Z, A, DZ, DDZ, FZ,

a, b}:
n = Lengthevs; L0 =L /. € » 0;
Q = Table[ (-8yspay,vspoy L9) /. Thread[vs » @] /.
(p|x) -0, {a, n}, {b, n}];
If[ (A =Det[Q]) == @, Return@"Degenerate Q!"];
Z =70 = CF@$rx[L +vs.Q.vs/2]; G =Inverse[Q];

FixedPoint[(DZ = Table[d,Z, {V, vs}];

DDZ = Table[8,DZ, {u, vs}];
FZ = Sum[G[a, b] (DDZ[a, b] + DZ[a] »DZ[b]),
{a, n}, {b, n}1/2;

A
e CF[ZO+J; $7[FZ] dl)t]) &, z];

PowerExpandeFactor [~ A™%/2]

E[CF[Z/.A—>1/. Thread[vs —>0]]]]3
Protect [Integrate];

©jm[-ux2/2+i§x] d{x}
[ g
—E[‘z]

N
©FofG=JE[—u (x-a)2/2+1£x] d{x}
QE[mau—m]

2u

N

Guido Fubini

Ogn= Normal[# +0[e]*®] &; J]E[—¢>2/2+e¢3/6] d{¢}

- —

24 16 1152 128 3072 96
From https://oeis.org/A226260:
"L THE OK-LINE EMCYCLOPEDITA
% OF INTEGER SEQUENCES ®

o [562 5% 1105e¢® 5658 82825¢1° 19675612]
+ + + +

Toinaded] i aghy b ™ | AL Sk
Baiirve

bt Ewma lic U Lag bome hpead o bdmiy =

il g pEp e ol ipias Faimnila By comm e wou BEPT T4 P I ke Tow s g b Tl iy
AR, LS, 1IRDRLEh, T Sk, LISEHMGASE,

0 LTI T, S T LTl O I35, MRS LTE,
TELIEETTRIBSNI RTINS, JRISETECLTBASE ST RE FICARLATY, TYRMITIAIELINTTITMNT (i s 2t bem

The Right-Handed Trefoil.
®K = Mirror@Knot[3, 1]; Features[K]
O Features[7, C4[-1] X1,5[1] X3,7[1] X6,2[1]]
©L[X: ,; [5_1] :=TS/21E[
Xi (Pi+1 = Pi) + X5 (Pj+1 - Pj) +
(T°-1) xi (Pis1-Pja1) +
(es/2)x
(x: (pi-ps) ((T°-1) xipj+2(1-x;5p;5)) -1)]
L[Ci [#_ 1] := TWZ]E[Xi (Pis1-Pi) +eg (% - Xi Pi)]

L[K_1 :=CF[£ /@Features[K][2]]
vs[K ] :=
Join ee Table[{pi, Xi}, {i, Features[K][1]}]

Joseph Fourier

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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© {vs[K], L[K]} Invariance Under Reidemeister 3, Take 3.
Q{{pl) X1, P25 X25 P35> X35 Pas Xas Pss X5, Pes Xes P75 X7} ©lhs = j(E[ini pi"'i":i P5 +impe] <L/@ (Xi,5[1] Xisa,ik [1] Xji1,k62[1]))

TE [_2 €-P1Xy+EP1I Xy +TPaXy —€Ps Xy + (1-T) peXq + A{Pis Pjs> Pks> Xis> Xj5 Xks Pis1s Pje1s Pke1s Xis1s Xjs15 Xks1}s
1 L1 L, rhs = [[(BLimps e oy py o pud < £ /@ (K5 l2) Xs s [2] Xit 5.1 [21))
— (-1+T)epipsx;+— (1-T) €psX] —PaXa+P3Xy-P3Xz+

2 2 d{Pis> Pjs> Pks> Xis Xj5 Xks Pi+1s Pjs1s Pke1s Xis1s Xjs15 Xks1l}s

1 -
EP3X3+TpaXs-€p7Xz+ (1-T) p8X3+E (-1+T) epsprxj + 1hs == rhs
1 O True
2.2
E(1*T)EP7X3*P4X4+€p4xa+P5X4*P5X5+P6X5* © lhs
€ P1Ps X1 Xs + €P5 X1 Xs — € Py Xe+ (1-T) P3Xe - P Xe + QT3/21E[

1
2 _ - _ 2 2 3e
€ PsXs + TP7Xg + €Py X2 X6 Ep2p5X2X6+2<1 T) €pyxg+ —T+]'1T2p2-i7’(i*]-l(*1+T)Tp2+j7Ti+J'lT2€p2+j7Ti*]‘l(*1+T)p2-k7Ti+

(-1+T) '5PzIi’sxé—p7x7+F’ss)(7—6I:’aI97X3X7+6P;X3X7]jL iTepokrm-

N
N

1
(-1+T) T2 € payi P2y 73 + > (-1+T) TP eplyni-

1 1
S (-1+T) TP epaiPakc i + = (-1+T)2Tepyypok 7 +
O¢r = Normal[# +0[e]?] &; jL[K] d vs [K] 2 ! 1T 3 i
1
S (-1+T) Tepiym+iTpagmy-iTepajmy-1 (-1+T) parmy+
o . (-1+T)2 (1+72) 2 s s
iTE ’W L (-1+2T) €Pauk 75 + T° € Paui P2.g 711 715 = T° € Pa, g 715 715 —
- 2 (-1+7T) T2 € Pai Pak 73 715 + (-1 + T) 2T € Pa.y Park M3 775 +
1-T+T 1 1
. . (—1+T)T€p§*kﬂiﬂj—*(—1+T)T€pzvjp2+kn§+7(_1+T)T€p§+kn§+
A faster program to compute p;, and more stories about it, are 2 2
at [BV2]. i Pauk Mk = 2 1 € Pauk Tk + T2 € Pt Pauk 71 7k = (=1 + T) T€ Pa.y Paok 71i 7k ~

2 2
TePpy 77k + T € Paij P2k 7§ 7k = T € Pay 75 ”k}

Invariance under the other Reidemeister moves is proven in a si-

I i Under Reidemeister 3.
fvariance Lnder Beidemerster milar way. See [Type.nb at wef3/ap.

it top variables

There’s more! To get sl invariants mod €, add the following
to L(Xl.j), L(Xi_j)’ and L(Cf), respectively (and see More.nb at w-

middle variables ef3/ap for the verifications):

ol e? (-6pix;+6pjxi-3(-1+3T) Pi P X2 +
k bottom variables 12 1% 3% iPjXg
3(-1+3T)pixi+4 (-1+T)pipjxi-2(-1+T) (5+T) pipixi+
©1hS = j(L /@ (Xi,5[1] Xiva,k[1] X541,k+2[21)) 2 (-1+T) (3+T) p? x3 + 18 p; Pj Xi X5 - 18 p§ Xi X5 -6p? P; x? Xj +

6 (2+T) pip§x§xj—6(1+T) p?x%xj—6pip§xix§+6p;xix§)

d{pii1, pj+1) Pk+1s Xis1s Xj+15 Xks1} 5 2 A A
©®e " ry[-1, 1, j]

rhs = J(L /@ (X4, [1] Xi ka1 [1] Xi41,542[2]))

a 1262 (-6 T2 pixs + 6T pyx; +
12T
d{Xii15 Pis1s Pj+1s Pk+1s Xj+1s Xks1} 5 3(-3+T) Tpsp; X§—3 (-34+T) Tp§x§—4 (-1+T) TP% P Xi*
lhs ===rhs 2(-1+T) (1+5T) pspixt-2(-1+T) (1+3T) p3xd+
O False 18 T2 pspy X X5 - 18 T pI Xy x5 -6 T2 pips xi x5 + 6 T (1+27T) ps p xi x5 -

6T (1+T) pxixj-6T p;pjx;x5+6T%p3x;x5)

@ez Y2lo, i]

o 1

Invariance Under Reidemeister 3, Take 2.
= 2 2
-— €T Q" Pi Xi

©1hs - j(L /@ (Xi,5[1] Xisa,k[1] Xju1,k42[11))
Even more! e The sl, formulas mod €* are in the last page of the
handout of [BN3].

rhs = j(L /@ (X4,k[1] Xi, ka2 [1] Xi41,542[2])) e Using [GPV] we can show that every finite type invariant is
I-Type.

e Probably, (Reshetikhin-Turaev) C (I-Type) efficiently.

o Possibly, (Rozansky Polynomials) c (I-Type) efficiently.
OTrue e Knot signatures are I-Type, at least mod 8.

e We already have some work on s/3, and it leads to the strongest
genuinely-computable knot invariant presently known.

A{Xis Xj5 Xks Pi+1s Pj+1s Pke1s Xis1s Xje1s Xks1}3

d{Xis Xj5 Xks Xis1s Pis1s Pje1s Pkels Xji1s Xks1}s
lhs === rhs

® lhs

O Degenerate Q!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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The slé62 Example (continues Schaveling [Sch]). H-
ere we have two formal variables 7'y and 7>, we set

T3 = T1T,, we integrate over 6 variables for each

edge: pii, P2i» P3is X1i» X2i» and x3;. Schaveling
@T;:T]_Tz; 1‘._+ :=i+1;

$7 =

(CFeNormal[# +0[e]?] /.
{7(7'.5__ e B-l Tiss Xis = B-l Xiss

pis »Bpi}/.eB™/;b<0-50/.B51)&;

©vVs; :=Sequence[ps,i, P2,is P3,is X1,is X2,i5 X3,i]3
Flis__1 :=E[Sum[n, ;p,,i, {i, {is}}, {v, 3}]11;
L[K ] :=CF[L£ /@Features[K][2]];
vs[K 1
Union @@ Table[{vs;}, {i, Features[K][1]}]
The Lagrangian.

© £[Xi_,; [s_1]1 := T3 E[CFePlus|
Doy (vt (Prir = pui) + %05 (Puge = Pvi) + (T3 -1) Xui (Pui = Pus®) )5
(T3 -1) p3j xai (T3 %21 - X25)
€5 (T3-1) pay (P2i - P25) Xs:/ (T3 - 1),
€s (1/ 2 + T3 P1i P2j Xai X2i — P1i P25 X1i X25 - P3i X3i -
(T3 - 1) P2j P3i Xa2i Xzi + (T3 = 1) P2j P3j Xai Xa1 +
2 pyj P3i X25 X3i + P1i P37 Xai X35 = P2i P35 X2i X35 —
T3 P2j P3j Xai X35 +
( (Ti - 1) P1j X1i (T§5 P2j X21i = T3 P2j Xa5 -
(T3 +1) (T3 -1) psj Xai + T3 P3; X35)
(T3-1) p3jXai (1 - T3 Pai Xai + Pai Xoj +
(r2-1))]1
©LIC [¢ 11 :=T{E[D" X,i (Pyir =Pvi) +€ ¢ (Pai X3i -1/2)]
Reidemeister 3.

(T2-2) P2y x25)) /

©Short[
lhs = ff[i, s K1 < £ /@ (Xi,5[1] i+, [1] X5+ 1+ [1])
d{Vvsi, VSj, VSk, VSj+, VSj+, vsk+}]
amnT

3e
E[T +Ti P1,2+i 7T1,i — (-1+Tq) Tq P1,2+5 7T1,i + <<15@>>]

© phs = J'r[i, 35 K1+ £ /@ (X, [1] X0 [1] X+, 3 [1])
d{VSi, VSj, VSk, VSji+, VSj+, VSi+};
lhs == rhs
OTrue

The Trefoil.
©K = Knot[3, 1]; jL[K] d vs [K]

=9 -

a-((iT13T3
E[-((e (1-Ty+Ti-Tp-Ti T+ T3+ T{T3-T1 T -
T+ T -TaT5+T1T3)) / ((1-Ty+ T3)
(1-To+T3) (1-TiT2+T373))) )/
((1-Te+T3) (1-Tp+T3) (1-TyT,+T5T3)))

A faster program, in which the Feynman diagrams
are “pre-computed” (see theta.nb at wef/ap):
©Ry[s_, 1, j 1 =CF[
S (1 /2 -gais + T35 8131 8291 — B1ii 8259 - (T§ = 1) 824i 83ii +
2 8555 83ii - (1 - T3) 8251 835i — 8211 8355 — T3 B25i B335 +
81ii 8335 +
((T5-1) 8131 (T3° 8291 - T3 8235 + T5 8355) +
(T3-1) g3js (1-T38155- (T1-1) (T3+1) a5 +
(T2-2) 8235+ 8213) ) / (T2-2)) |5
®e[{se_, i6_, jo_}, {s1_, i1l _, j1_}] :=
CF[s1 (T37-1) (T3 - 1) (75" - 1) 84,51,10 83, 50,11
( (Ti" 82,i1,i0 - B2,i1,70) - (Tie 82,51,10 - 82,51,50) ) |
OTily , k.1 =-0/2+0¢83u;
We call the invariant computed 6:
©6[K_] :=Modu1e[(Cs, ¢, n, A, s, i, j, k, A, G, v, a, B, gEval, c, z},
{Cs, ©} =Rot[K]; n = Length[Cs];
A = IdentityMatrix[2n +1];
Cases[Cs, {s ,1 ,7 }=»

(pnci, 3, cien, Gemmes (T

A = T(-Total[¢]-Total [CSTALL,111) /2 pat [A] ;

3

))]

G = Inverse[A];
gEval[& ] := Factor[& /. 8, .,z = (Gla, A1 /. T>T,)1;

z= gEval[Z:l:lEz:le[cSuku], Csik211];
z += gEval [Eﬂ R; @@ Cs[k] ] ;
Z += gEval[Zi:lr‘l[tpEk]], k1]s
(B, (A/.ToTy) (A/.T>Ty) (A/.T-Ts) 2z} // Factor];
Some Knots.
© Expand[6[Knot[3, 1]]]

1 1 1 1
Q{—1+—+T,——2—Ti——2— 2 2+ 2+
T T2 T2OT2T2 T, T2
1 0T T
f e 2T T, - T T T - T TS
T, T, T

® PolyPlot[©] = Graphics[{}];
PolyPlot[p ] := Module[{cr‘s, ml, m2, maxc, minc, s, hex},

s s 1=-E; t Tq1,Mi 2=-E: t To,Mi
crs = Coeff1c1entRu1es[T'; Xponsutip.flab NI N2esEXponentp, 12, Me01E)

{T1, Tz}]i
maxc = NeLog@Max@Abs [Last /@crs];
minc = NeLog@Min@Select[Abs[Last /@crs], # > 0 &];
If[minc == maxc, s[_] =0,

s[c_] :=s[c] = (maxc - Log@c) / (maxc - minc)];

hex = Table[{Cos[a], Sin[a]} /Cos[2 7/ 12] /2,

{a, 27/12, 27, 27t/ 6}];
Gr‘aphics[crs /. ({x1_, x2_}>»c_) » {

If[c == 0, White, Lighter[If[c > @, Red, Blue],
0.88 s[Absec]]],

1 -1/2

e«/?/z

PolyPlot[{4 , & }] := PolyPlot[&]

&/@hex] }] ];

Polygon[[[ ].(x1+m1, X2 +m2} + #

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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®© GraphicsRow[PolyPlot[e[Knot[#]]] &
/@ {"3 1", "K11n34", "K11n42"}]

Kl11n34 K11n42

The torus knot
T27:

So 6 detects knot mutation and se-
parates the Conway knot K11n34
from the Kinoshita-Terasaka knot
K11n42!

Pl e

WA

gr o J

i m /

Conway Kinoshita  Terasaka

® GraphicsRow[PolyPlot [6[TorusKnot @@ #]] &
/@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}},
Spacings - 0]

e e e TR T T Ml N T LA T L VA L O o L

e = -'t"L‘\‘1‘1‘uuu‘mmnmnwpnﬂm-:qﬂi.l.r': ."J;' s
Last, a random 250 crossing knot (knot from N. Dunfield; more
at wef/DK):
The 48-crossing Gompf-
Scharlemann-Thompson knot

[GST] is significant because it may
be a counterexample to the slice-
ribbon conjecture:

#£
&y 1 Y 0 19
— e ) m Prior Art. 6 is probably equal
1 2 23 30 o 0342 to the “2-loop polynomial” stu-
- : I died by Ohtsuki at [Oh2] (at M
. o much greater difficulty, and w- T
ith harder computations). @ js  Ohtsuki  Garoufalidis  Kashacv
® AbsoluteTiminge related, but probably not equivalent, to the invariant studied by
PolyPlot | Garoufalidis and Kashaev at [GK].

©[EPD[X14,15 X2,205 X3,405 Xa3,a5 X26,55 Xs,955 Xo6,75> X13,85 Xo,285

6 Sees Topology! Indeed, for a knot K, half the T'; degree (say) of

6(K) bounds the genus of K from below, and this bound is some-
times better (and sometimes worse) than the bound coming from
A. Tt is fair to hope that “anything A can do 6 can do too” (see
[BN2]), and in particular, that & may say something about ribbon
and/or slice properties.

Xi0,415 Xa2,115> X27,125> X3e,15> X16,615 X17,72> X18,83> X19,345 Xg9,205
X21,025> X79,225 Xes,23> X57,245 X25,565 Xe2,315 X73,325 Xsa,33> Xse,355
X36,815> X37,705 X38,505 X39,545> Xaa,555 Xsg,455 Xe9,465 Xs0,47> Xas,01>
Xoo,295 Xs1,825> Xs2,715 Xs3,605 Xe3,745> Xea,855> X76,655> X87,665> Xe7,945
X75,865 Xss,775 Xn,ss] ]]

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.
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The Rolfsen Table of Knots.

.
Q
o
#

L
& a
L& |

©
*
.
hod

= S @@
£ @

Q%

L L lEE
spee O
G SSE0e8T
GhHedkeseex0®
SESRTBH

BeO%
EREER S

&% ®eGe
*ERBBOTER
*H888 i@

E TR 1.0
PRed90e
FoF TR T R 10
2T 1 Jab 1@

SGeoOBawew
H#OEeEST e

DheeEs
Lk JoL 2 -
i#@%ﬁ## @

O
&8
i
&
%
@
-
i &

sed @998
GeBDEMES

%
o .
-
o d
& &
®®
*s
i

&0
*

SeEed [oeT

*®
£
#
o
o

& @
bl L4
W ®

BB RBOBOES

Where is it coming from? The most honest answer is “we don’t [BN1] D. Bar-Natan, Everything around sl5, is DoPeGDO. — References.

e
-\'11

know” (and that’s good!). The second most, “undetermined co- So what?, talk given in “Quantum Topology and Hyperbolic Geometry Con-

efficients for an ansatz that made sense”. The ansatz comes from ference”, Da Nang, Vietnam, May 2019. Handout and video at wef/DPG.

he followi inciol li K- [BN2] D. Bar-Natan, Algebraic Knot Theory, talk given in Sydney, September

the following principles / earlier work: . . 2019. Handout and video at we/AKT.

Morphisms have generating functions. Indeed, there is an iso- [BN3] D. Bar-Natan, Cars, Interchanges, Traffic Counters, and some Pretty

morphism Darned Good Knot Invariants, talk given in “Using Quantum Invariants to
do Interesting Topology”, Oaxaca, Mexico, October 2022. Handout and vi-

G: Hom(Qlx;],Qly;) — QL& SR

deo at wef/Cars.
and by PBW, many relevant spaces are polynomial rings, though [BV1] D.Bar-Natan and R. van der Veen, A Polynomial Time Knot Polynomial,
only as vector spaces. Proc. Amer. Math. Soc. 147 (2019) 377-397, axiv:1708.04853.
[BV2] D. Bar-Natan and R. van der Veen, A Perturbed-Alexander Invariant, to
appear in Quantum Topology, wef/APAL
[BV3] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Fu-

Composition is integration. Indeed, if f € Hom(Q[x;], Qly;])
and g € Hom(Q[y;], Q[z]), then

_ —yn nctions for Universal Knot Invariants, arxiv:i2109.02057.
of)y=| e d
Ggof) f fgdydn [BG] J. Becerra Garrido, Universal Quantum Knot Invariants, Ph.D. thesis,
Use universal invariants. These take values in a universal enve- o Ung’eféﬁy "i (l}fioninggn’ ‘”Sﬁ/]ic’- l " l o

. . . [GK] S. Garoufalidis and R. Kashaev, Multivariable Knot Polynomials from
loping algebra (PF:rhaps quantlzéd), and thus they are expressible Braided Hopf Algebras with Automorphisms, arxiv:2311.11528.
as long compositions of generating functions. See [La, Ohl]. [GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and
“Solvable approximation” ~» perturbed Gaussians. Let g be Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectu-

a semisimple Lie algebra, let b be its Cartan subalgebra, and let res, Geom. and Top. 14 (2010) 2305-2347, arxiv:1103.1601.
b* and bl be its upper and lower Borel subalgebras. Then b* has [GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants

/- . of classical and virtual knots, Topology 39 (2000) 1045-1068, arXiv:
a bracket 3, and as the dual of b’ it also has a cobracket ¢, and in math.GT/9810073.

fact, g@ b = DOUble(bunB’ 6). Let 9: = DOUble(bunB’ €6) (mod [La] R.J. Lawrence, Universal Link Invariants using Quantum Groups, Proc.
€?*! it is solvable for any d). Then by [BV3, BN1] (in the case XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England,

of g = sip) all the interesting tensors of U(g}) (quantized or not) August 1988. World Scientific (1989) 55-63.
are perturbed Gaussian with perturbatlon parameter € with with [LV] D. Lépez Neumann and R. van der Veen, Genus Bounds from Unrolled

. Quantum Groups at Roots of Unity, axiv:2312.02070.
understood bounds on the degrees of the p erturbations. [Oh1] T. Ohtsuki, Quantum Invariants, Series on Knots and Everything 29,

World Scientific 2002.

[Oh2] T. Ohtsuki, On the 2—Loop Polynomial of Knots, Geom. Topol. 11-3
(2007) 1357-1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,
Ph.D. thesis, University of North Carolina, August 2013, wef/Ov.

[R1] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones
Polynomial and Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys.
175-2 (1996) 275-296, arxivhep-th/9401061.

[R2] L. Rozansky, The Universal R-Matrix, Burau Representation and the
Melvin-Morton Expansion of the Colored Jones Polynomial, Adv. Math.

The Philosophy Corner. “Univer-
sal invariants”, valued in universal e-
nveloping algebra (possibly quanti-
zed) rather than in representations
thereof, are a priori better than the
representation theoretic ones. They
are compatible with strand doubling
(the Hopf coproduct), and as the

knot genus and the ribbon property 134-1 (1998) 1-31, arxiv:q-alg/9604005.
for knots are expressible in terms of strand doubling, universal i- [R3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality
nvariants stand a chance to say something about these properties. Conjecture, arxiv:math/0201139.

Indeed, they sometimes do! See e.g. [BN2, Oh2, GK, LV, BG]. [SCIS S S?the}:iil.f’ Exspm:smﬁs Ogongantug;sG}r;oup Invariants, Ph.D. thesis,
. o . . N nive: eiden, mbe! , WE a.
Representation theoretic invariants don’t do that! HErsTiet Lelden, Sepleriber WERSe

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407 and
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408.

18


http://www.math.toronto.edu/~drorbn/Talks/Beijing-2407
http://www.math.toronto.edu/~drorbn/Talks/Geneva-2408

Dror Bar-Natan: Talks: USC-240205: Thanks for allowing me at USC! [E%[E]
Shifted Partial Quadratics, their Pushforwards, and Signature Invariants for Tangles http://drorbn.net/usc24 E-,‘%ﬁ
IAbstract. Following a general discussion of the co- : i [Ka]
mputation of zombians of unfinished columbaria (with iu’s Theorem [Li].

examples), I will tell you about my recent joint work Partial Quadratic (PQ) on V is a quadratic Q defined only on

For links, ok = 20771

w/ Jessica Liu on what we feel is the “textbook” exten- [g a subspace Do C V. We add PQs with Dy, +g, = Do, N Dy,.
sion of knot signatures to tangles, which for unknown iven a linear ¢y: V — W and a PQ Q on W, there is an obvious
reasons, is not in any of the textbooks that we know. Jessica Liu pullback y*Q, aPQon V.

Theorem 1. Given a linear ¢: V — W and a PQ Q on V, there is

- & "‘ﬁ' ~ _la unique pushforward PQ ¢,.Q on W such that for every PQ U on
.' W, ov(Q +¢*U) = O'ker(ﬁ(Qlkerq}) +ow(U + ¢.0).
o 3 L liee ] (If you must, D(¢.Q) = ¢(anny(D(Q) N ker ¢)) and (p.Q)(w) = O(),

Jacobian, Hamiltonian, Zombianwhere v is s.t. #(v) = w and Q(v, rad Qlierg) = 0).

(Columbaria in an East Sydney Cemetery

Prior Art on signatures for tangles / braids. = Gambaudo [Gist of the Proof. . W

and Ghys [GG], Cimasoni and Conway [CC], Conway [Co], P u 1 . 0} 0 o | —= T(Qhery)

Merz [Me]. All define signatures of tangles / braids by first clo- A | B rz)l“r?/glol 10 7%14\ L

sing them to links and then work hard to derive composition pro- | | ' ? o 'ol| c

perties. BT |U ‘ — CT|F=FT

'Why Tangles? e Faster! - W, w0 CT|U+F

e Conceptually clearer proofs of invariance . anc‘l/ the quadratic F =: 6, é is well-defined on

(and of skein relations). . Vi iE;:z;citliyiv&;ha{ we ;V;ll;t: if the Zombian is the éi:gnature!

o Often fun and consequential: AT V: The full space of faces. wlw|wlw

o The Jones Polynomial ~» The Temperley-Lieb Algebra. W: The boundary, made of gaps. _- ¥ & — W

o Khovanov Homology ~» “Unfinished complexes™, complexes |, he known parts. el el
ma categqry. 'Y U: The part yet unknown. l face, = )

o The Kontsechh Integral | § #3%853% (0 4 ¢*(U)): The overall Zombian. wiw [ w|w W = U
~> Associators. :‘é - Gl - 2 0 (Qlkerg): An internal bit. U + ¢.Q: A boundary bit.

o HI;II(D:AO;[S,‘t'y'pe D, :M gageges VJ IAnd so our ZPUC is the pair S = (0(Qlkerg), 9+ Q).

Zombies: FrepkeomA Shifted Partial Quadratic (SPQ) on V is a pair § = (s €
7, Q a PQ on V). addition also adds the shifts, pullbacks keep the
shifts, yet ¢, = (5 + Okerg(QOlkery), ¢ Q) and o(S) = 5 + o(Q).
Theorem 1’ (Reciprocity). Given ¢: V — W, for SPQs S on

V and U on W we have oy(S + ¢*U) = ow(U + ¢..S) (and this
BWlicharacterizes ¢.5). Note. ¥* is additive but ¢, is not.
heorem 2. " and ¢, are functorial. Y<w
heorem 3. “The pullback of a pushforward scene is #} .7 {v
a pushforward scene”: If, on the right, 8 and ¢ are ar- 14 7 VA
itrary, ¥ = EQ(B,y) = V& W = {(v,w): Bv = yw} and u and v
are the obvious projections, then y*8. = v, u"*.

Computing Zombians of Unfinished Columbaria.

e Must be no slower than for finished ones.

e Future zombies must be able to complete the
computation.

e Future zombies must not even know the size
of the task that today’s zombies were facing.

e We must be able to extend to ZPUCs, Zombie
Processed Unfinished Columbaria!

[Example / Exercise. Compute the determinant

of a 1,000 x 1,000 matrix in which 50 entries

are not yet given. Columbarium near Asse

Homework / Research Projects. e What with ZPUCs? e Use . 82 SPQ S
this to get an Alexander tangle invariant. — Definition. S| . = {on (g }
Reminders. {links} “{Vﬁlatrices / quadratic forms} —— 2" |Theorem 4. {S(eyclic sets)} is a
i s planar algebra, with compositions
5 . T oo S(D)(S)) = ¢2WH(ED,;S ), where
/ _){ A=A —1...07 O_+_;_7+s Wp: {fi) = {gei) maps every face of D
ﬂ 0 to the sum of the input gaps adjacent to Connection Diagram
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I _it and ¢”: () — {(g;) maps every face to the sum of the output

. = - o - voste s )
With |w[=1,7=1—w,r=1+1,v=Re(w), and u = Re(w'?): lgaps adjacent to it. So for our D, Yp: fi - g, fo = g31+814+824+833»

|

Xoi kot [ —r =t 2t I\ : vou 1 wils 8 fa g, fs o gi3tgas fo o g fi o gt and ¢D:
N N I S N P B 1 e T e e A A A N e N T Ay O

- j =17 7 [ =

! \] b 0 e L | I u v ulkTheorem 5. TL and Kas, defined on
A0 N S E t 0 -t 0)1 Ss—=1w 1 u 1)1 S = %

———mm e — - - Al AR Ll - 7’;7ffb;fiXanans before, extend to planar % ® g E

X i jkmt | o 7 olh | || ; algebra morphisms {tangles} — {S}. K] & &
k k/j DA 4= —t t 17 DA = u u J X .

¥ ; | 2 ¢t r  —ilk| 1 u v ulkRestricted to links, TL = o, and Kas = 0 k.
27N\ s=0 0y o — o)rrs+=1u 1 u 1)1

Video: http://wuw.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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Dror Bar-Natan: Talks: Tokyo-230911: Thanks for inviting me to UTokyo! _E [=]

Rooting the BKT for FTI wep:=http://drorbn.nettok2309faj

“erant RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

Acknowledgement. This work was partially supported by NSERC

IAbstract. Following joint work with Itai Bar-Natan, Iva Halache-
iva, and Nancy Scherich, I will show that the Best Known Time
(BKT) to compute a typical Finite Type Invariant (FTI) of type d
on a typical knot with n crossings is roughly equal to n%/2, which
is roughly the square root of what I believe was the standard be-
lief before, namely about n¢.

My Primary Interest. Strong, fast, homomorphic knot and tan-
ele invariants. wef/Nara, wep/Kyoto, wef/Tokyo
T T T L

Conventions. e n = {1,2,...,
ignore constant and logarithmic terms: n* ~ 2023d!(log n

n}. e For complexity estimates we
Yn3.

A Key Preliminary. Let Q C
n’ be an enumerated subset, with
l < g =|0| <n Intime ~ g
we can set up a lookup table of
size ~ ¢ so that we will be able
to compute |Q N R| in time ~ 1,
for any rectangle R C n'.

[Fails. e Count after R is prese-
nted. e Make a lookup table of
|O N R| counts for all R’s.

>

[Unfail. Make a restricted loo-
kup table of the form

{ dyadic lQ m Rl }

e Make the table by running
through x € Q, and for each
one increment by 1 only the
entries for dyadic R > x (or
create such an entry, if it di-
dn’t exist already) This takes
q - (logy n)' ~ g ops. .
e Entries for empty dyadic R’s are not needed and not created

e Using standard sorting techniques, access takes log, g ~ 1 ops. |
e A general R is a union of at most (2log, n)! ~ 1 dyadic ones,

so counting |Q N R| takes ~ 1 ops.

Generalization.  Without changing the conclusion, replace
counts |Q N R| with summations Y 6, where 6: n’ — V is suppor-
ted on a sparse Q, takes values in a vector space V withdim V ~ 1,
and in some basis, all of its coefficients are “easy”.

Gauss Diagrams.

G ~ T 8§
+ + = @ K and now ¢4(G) = ( ) Z Z P#, O
7 2 3 456 7 8 - Pe(G) o g;i’;;’f‘lg [T:(Paiy-1-Pac)
gfgri’:!%p:re”ssz dl)f)o LR ==l ; can be computed in time ~ n” + n'. Now take p = [d/2].
R .' = = e Question ([BBHS], wep/
TR L i S R e TR e Fields).  For computations,

& - - B pR . : i
b - - R - S
P Fa F | ba e vk . B 0. wad TN o S A N P ORI S Y o

"The [GPV] Theorem. A knot invariant is fi-

" for some w € de
/@ & is easy; = is hard and IMHO not well understood.

""o The theory of finite type invariants is very rich. Many knot

rrfrrre We need a fast algorithm to compute ¢!

e -_';Our Main Theorem. On an n-arrow Gauss diagram, ¢, can be
-:* computed in time ~ n/%/?1.

+Proof. Withd = p + I (p for “put”, [ for “lookup”), pick p arrows

" “and look up in how many ways the remaining / can be placed in

--planar projections are better

IIIIE'I
£
] 'u.:',' F
e i
i
B as
. (T ]
Bl
ki o

PE2

Goussarov-Polyak-Viro

nite type of type d iff it is of the form w o ¢4

® .4 is not an invariants and not every w gives an invariant!

invariants factor through finite type invariants, and it is possible
that they separate knots.

between the legs of the first p:

.'|.' r

,—1"’

..|.|.'

—

Pl s i PR
1 ;{f “‘a-k.h

:'.:-....-a-.l.- /A-S\i. -\.-l}?"-
A.

[To reconstruct D P#,L from P and L we need a non-decreasing
“placement function” A: 2] — 2p + 1.

-1
0a(G) = Z D= (i) Z P# L
De(y) PeC) BT LD,
Define 65 : 2_n2’ — G, by
L if(Ly,...,Ly) are the ends of some L C G

0 otherwise

(L],...,Lz[) I—){

Definitions. Let G := Q(Gauss Diagrams), with G, / G<,4 the
diagrams with exactly / at most d arrows. Let ¢;: G — G, be

(Pd:G'_) Z D = Z D,andlet(p5d=zegd‘ﬁe-
DCG, |Dl=d De($)

Naively, it takes (Z) ~nd

ops to compute @g.

023/09/11@06:00

®3

"7 D

than braids (as likely [ ~ n3/?).
But are yarn balls better than  Length L
planar projections (here likely n ~ L*/3)?

n crossings length /
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University of Toronto: Dror Bar-Natan: Talks: Nara-2308:

Thanks for inviting me to Nara!

Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants More at wep/APAI @jir

wef:=http://drorbn.net/na23 1@ =

Abstract. Reporting on joint w-
ork with Roland van der Veen, I’'ll

tell you some stories about P1, an Roh;a:lsky Overbay Ohtsuki van der
easy to define, strong, fast to compute, homomorphic,  Veen
and well-connected knot invariant. p; was first studied by Ro-
zansky and Overbay [Rol, Ro2, Ro3, Ov] and Ohtsuki [Oh2],
it has far-reaching generalizations, it is elementary and domina-
ted by the coloured Jones polynomial, and I wish I understood it.
Common misconception. Dominated, elementary = lesser.

1 Jones:

o}
| Formulas stay;
interpretations change with time.

[Formulas. Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k € {1,...,2n + 1} and with
rotation numbers ¢y. Let A be the 2n+1)x(2n+1)
matrix constructed by starting with the identity ma-

¢4 =~1

\We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
[Fast. Computable even for large knots (best: poly time).

JR— "H:
J P Plfcmllo
%J D% '“*1:_{
/ WYy
L |
|t III !
| _ I,'I'I.-"II
.III-I
Gompf— Scharlemann— y _.-"".:-

Thompson vt

[Homomorphic. Extends to tan-

\/\

eles and behaves under tangle K
operations; especially gluings \\ \/N
and doublings:

trix /, and adding a 2 X 2 block for each crossing:

'Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle 7" with skeleton as below
such that 7(T) = K and where 6(T') = U is the untangle:

UUU U ‘U

K

(n=3)

[Hear more at wef3/AKT.

s=+1 s=-1
s fﬂ A |coli+l col j+1
— = rowi -T° T -1
J / row j 0 -1
Let G = (g45) = A~ For the trefoil example, it is: Burau
1 -T 0 0O T-1 0 0
0 1 -1 0 0 0 0
0 0 1 -T 0 0 T -1 Alexander
A=l 0 O 1 -1 0 0 R
0O 0 T-1 O 1 -T 0
0O 0 0 0 0 1 -1
0O 0 0 0 0 0 1
1 T 1 T 1 T 1
1 T T 72
0 1 T2-T+1 T2-T+1 T2-T+1  T°-T+1 1
0 0 1 T T T 1
TrTel T+l T2T+l T2+
G=|10 0 1 1 o
T2—T+1 TEL TT+l 1T+ Wirtinger
0 0 = _r-n 1 T 1 -
T2-T+1  T2-T+1 T2-T+1 T2-T+1 | Lo
0 0 0 0 0 1 1 i3
E 0 0 0 0 0 0 1
“The Green Function” Blanchfield|

Note. The Alexander polynomial A is given by

Acknowledgement. This work was supported by NSERC grant
RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

A=TC R der(d),  withg= Y @ w=Y s
k c

Classical Topologists: This is boring. Yawn.

[BV1] D. Bar-Natan and R. van der Veen, A Polynomial Time Knot References.
Polynomial, Proc. Amer. Math. Soc. 147 (2019) 377-397, arXiv:1708.04853.

[BV2] D. Bar-Natan and R. van der Veen, Perturbed Gaussian Generating Functions for
Universal Knot Invariants, arXiv:2109.02057.

[Dr] V.G. Drinfel’d, Quantum Groups, Proc. Int. Cong. Math., 798-820, Berkeley, 1986.
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[Rol] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Poly-
nomial and Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996)
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I[Formulas, continued. Finally, set
Ri(c) = S(gji (gj+l,j + &jj+1 — gij) — &ii (gj,j+1 - 1) - 1/2)

p1 =N (Z Ri(©) = " e (gu - 1/2>) :
c k

In our example p; = —T2 + 2T — 2+ 2T~ - T72,
Theorem. p; is a knot invariant.

Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability 7° ~ 1, but falls off with probability 1 — 7° ~ 0*. At the
very end, cars fall off and disappear. See also [Jo, LTW].

Proof: later.

Wang

Jones Lin Tian

[Ro2] L. Rozansky, The Universal R-Matrix, Burau Representation
and the Melvin-Morton Expansion of the Colored Jones Polynomial
Adv. Math. 134-1 (1998) 1-31, arXiv:q-alg/9604005.

[Ro3] L. Rozansky, A Universal U(1)-RCC Invariant of Links and Ra-
tionality Conjecture, arXiv:math/0201139.

[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D.
thesis, Universiteit Leiden, September 2020, wef3/Scha.

p=1-T°

* In algebra x

L

_lll{_.-r" S

image credits:
diamondtraffic.com

~ 0 if for every y in the ideal generated by x, 1 — y is invertible.

imaﬁe credits:
all-E

Video: http://wuw.math.toronto.edu/~drorbn/Talks/0axaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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Dror Bar-Natan: Talks: Ottawa-2306:

Thanks for inviting me to Ottawa!
Computing the Zombian of an Unfinished Columbarium confession. It's about 50% of what I do.

oef:=http://drorbn.net/ott23 [H]3 =]

=

IApology. It’s a 20 minutes talk. Necessarily, it will be superficial.
IAbstract. The zombies need to compute a quantity, the zombian
that pertains to some structure — say, a columbarium. But un—
fortunately (for them), a part of that structure will only be known | i
in the future. What can they compute today with the parts they
already have to hasten tomorrow’s computation?

That’s a common quest, and I will illustrate it with a few exa-
mples from knot theory and with two examples about matrices —

ams (perhaps delusions): that one day I will be able to reproduce,
and extend, the Rolfsen table of knots using code of the highest
level of beauty.

Columbaria in an East Sydney Cemetery

determinants and signatures. I will also mention two of my dre- |

_| o The Alexander polynomial ~> Zombian = det.

Jacobian, Hamiltonian, Zombian|

IKnots and Tangles

“Nautical Knots”

1-|.I

@Elh

i’@
iy E‘D’f

'Why Tangles? e As common as knots!

e Faster computations!

e Conceptually clearer proofs of invariance
(and of skein relations).

e Often fun and consequential:

i

2n/2 4 on/2 4 VR n

o Knot signatures ~> Pushforwards of quadratic forms.

Computing Zombians of Unfinished Columbaria.

e Future zombies must be able to complete the
computation.

e Must be no slower than for finished ones.

e Future zombies must not even know the size
of the task that today’s zombies were facing.

e We must be able to extend to ZPUCs, Zombie
Processed Unfinished Columbaria!

[Exercise 1. Compute the sum of 1,000 num-

bers, the last 50 of which are still unknown.

1,000 x 1,000 matrix in which 50 entries are not yet given.
I[Example 3. Same, for signatures of matrices / quadratic forms.

Zombies: Freepik.com|

%' #|0One more story is left to tell, of knot tabulation.

[Exercise 2. Compute the determinant of a Columbarium near Assen

o The Jones Polynomial ~» The Temperley-Lieb Algebra.

o Khovanov Homology ~» “Unfinished complexes”, complexes
in a category.

o The Kontsevich Integral ~» Drinfel’d Associators.

'wo slides from R. Jason Parsley’s wef/history:

\ Brief History of (Prime) Knot Tabulation Brief History of Knot Tabulation 111

Gauss knew and thought about knots — 1833 integral formula
for linking number. Before him, Vandermonde (1771) wrote a

i @ Conway (1964)
seminal paper on topology & discussed knots.

Knots to 11 crossings, links to 10 crossings; errors.
@ Rolfsen (1976)  Knots to 10 crossings. 1 error.
@ Caudron (1978) - knots to 11 crossings correctly.

@ DollHoste (1991)  Oriented links to 10 crossings.
@ Cerf (1998) Oriented alt. links to 10 crossings
@ Hoste/Thistlethwaite/Weeks (1998)
1,701,936 knots to 16 crossings; determined chirality
@ Flint/Rankin (2007)
98,517,495,461 alternating links to 23 crossings.
Al of these are for prime knots only!!

Atomic model [Kelvin, late 1800's]
Atoms are knotted vortices in the ether.

This theory, albeit vastly incorrect, led to the first serious work
in knot theory.
a Tait (1876), a colleague of Kelvin — knots to 7 crossings
o Kirkman (1885, British) — knot projections
o Little (1885, Nebraska) — knots to 10 crossings
a by 1900, Tait, Kirkman, Little had produced all < 10
crossing knots and all 11 crossing alternating knots

A quadratic form on a v.s. V over C is a quadratic Q: V — C,
or a sesquilinear Hermitian (-,-) on V X V (so (x,y) = (y, x) and
Q(y) = (y,y)), or given a basis ; of V*, a matrix A = (a;;) with
A = AT and Q = Y a;;fim;. The signature o of Q is oy — o_,
where for some P, PTAP = diag(1, -, 1,-1,"~,—1,0,...).

here's also Burton’s tabulation to 19 crossings wef/Burton, and Khesin's K250, arXiv:1705.10319.
I[Embarrassment 1 (personal). I don’t know how to reproduce
the Rolfsen table of knots! Many others can, yet I still take it on
faith, contradicting one of the tenets of our practice, “thou shalt
not use what thou canst not prove”.

A Partial Quadratic (PQ) on V is a quadratic Q defined only on
a subspace Dy C V. We add PQs with Dy, .o, = Do, N Dy,.
Given a linear y: V — W and a PQ Q on W, there is an obvious
pullback y*Q,aPQon V.

Theorem 1 (with Jessica Liu). Given a linear ¢: V —
W and a PQ Q on V, there is a unique pushforward PQ
#..Q on W such that for every PQ U on W,

ov(Q + ¢"U) = Okerg(Qliery) + ow(U + ¢.0).

Gist of the Proof. T W Jessica Liu
0 (Qlers)
P . | . | 0 0 —_— ker ¢
i simul. :
A B | row/col VO,,%E,,V,,,
. -
p ops 0 : 0 C
/BT U I
W Wl 0 | CT|U+F
\/‘/\/\/ )

.. and the quadratic F =: ¢..Q is well-defined only onD : = kerC.

(more at wef/icerm.)

I[t’s harder than it seems! Producing all knot diagrams is a mess,
identifying all available Reidemeister moves is a mess, and you
sometimes have to go up in crossing number before you can go
own again.

mbarrassment 2 (communal). There isn’t anywhere a tabu-
ation of tangles! When you want to test your new discoveries,
here do you go?

ream. Conquer both embarrassments at once. Reproduce the
olfsen table, and extend it to tangles, using code of the highest
level of beauty. The algorithm should be so clear and simple that
anyone should be able to easily implement it in an afternoon wi-
thout messing with any technicalities. |

_

()<

)Acknowledgement. This work was partially supported by
INSERC grant RGPIN-2018-04350 and by the Chu Family Foun-
dation (NYC).

A
We don’tevenneed tolo-  The dreaded slide moves, which go R-moves
. . . are tangle
ok at all knot diagrams! up in crossing number, are parame- .
equalities!

trized by tangles!

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Ottawa-2306/
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Dror Bar-Natan: Talks: LesDiablerets-2208: Thanks for inviting me to Les Diablerets! wef:=http://drorbn.net/1d22/ 1_@ [=]
[Tangles in a Pole Dance Studio: A Reading of Massuyeau, Alekseev, and Naef OER

IPreliminary Definitions. Fix p € Nand F = Q/C. Other Passions. With Roland van der Veen, I use “so-
PDS; w

LetD, = D*\( p pts), and let the Pole Dance Studio Ivable approximation” and “Perturbed Gaussian Differe-
be PDS, := D, X I. ntial Operators” to unveil simple, strong, fast to compu-
IAbstract. I will report on joint work [ . te, and topologically meaningful knot invariants near the
with Zsuzsanna Dancso, Tamara A lexander polynomial. (C polymath!)
Hogan, Jessica Liu, and Nancy Sche- ' : i
rich. Little of what we do is original,
and much of it is simply a reading of Massuyeau [Ma] and Alek-
seev and Naef [AN1].

We study the pole-strand and §
strand-strand double filtration on
the space of tangles in a pole
dance studio (a punctured disk
cross an interval), the correspon-
ding homomorphic expansions, | &
and a strand-only HOMFLY—PT Jessica, Nancy, Tamara, Zsuzsi, & Dror in PDS.
relation. When the strands are transparent or nearly transparent
to each other we recover and perhaps simplify substantial parts [
of the work of the aforementioned authors on expansions for the |;j¢
Goldman-Turaev Lie bi-algebra.
Definitions. Let 7 := FG(X1, ..., X,) be the free group (of defor-
imation classes of based curves in D)), 7 be the framed free group
(deformation classes of based immersed curves), || and |77| deno-

Dancso Hogan Liu  Scheric

Key 1. W: |7 — |Alis Z)} : K1 (O) = AL (O).
Key 2 (Schematic). Suppose Ay, 1 : |7 — K(QO) are two ways
of lifting plane curves into knots in PDS,, (namely, P o 4; = I).

. e . Then for y € |r], Lemma 1. “Division by #” is well-defined.
te F-linear combinations of cyclic words (|x;w| = |wx;|, unbased _ B e acl! L B
curves), A := FA(xy, ..., x,) be the free associative algebra, and 1) = (o) — )/ € Ky (OO) = || ® [7]
let JA] := A/(x;w = wx;) denote cyclic algebra words. and we get an operation 7 on plane curves. If Kontsevich likes g

and A; (namely if there are A7 with Z2i(y)) = A (W(y))), then
| 7 will have a compatible algebraic companion r*:

m ﬂ E E w WA @= W@ - K@)/ e ALOO) = A8 Al

Theorem 1 (Goldman, Turaev, Massuyeau, Alekseév, Kawazu- [For indeed, in ﬂg we have AW (n(y)) = hZ(n(y)) = Z(Ap(y)) —
imi, Kuno, Naef). || and |A| are Lie bialgebras, and there is a [Z(1;(y)) = A5(W(y)) — A{(W(y)) = in“(W(y)).

“homomorphic expansion” W: || — |A|: a morphism of Lie bial- ol ik Example 1. With 71,72 €
‘- il Cor 1) set a7y = (C35D) (D)
D

igebras with W(IX;|) =1 + [x;| + .. ..
Further Definitions. e K = %K, = K = K(S) := | ¥1 - and 41(y1,72) = 2 -
F(framed tangles in PDS)). <§¥ #3517, where ¥; are arbitrary lifts of ;. Then 7, is the Gol-

® K’ :=(the image via X — {— X of tangles in PDS), 1 dman bracket! Note that here 1y and A; are not well4
that have 7 double points, of which s are strand-strand). BESSEE (efined, yet 7 is.

. , [Example 2. With y;,y, € «m (or &) and with
2 _ —
KO = < OOO [ X > A=X o, A1 as on the right, we get the “double bra-
Nan
i

E.g.,

o K5 := /K. Most important, K/(QO) = |a|, and there is cket”mp: 7 ® 7 _) TR (OITR®T > ART).
P: 7((0) N |7Tl'| Example 3. With Y € 7 and
o A= [1K:/FKon1n A= [1K /K, C A, Al = AR, Wo(y) its ascending realization i

[Fact 1. The Kontsevich Integral is an “expansion” Z: K — A, as a bottpm tangle a}nd AL IS yscending  descending
. . descending realization as a bottom tangle, we get
compatible with several noteworthy structures.

[Fact 2 (Le-Murakami, [LM1]). Z satisfies the strand-strand 3 :_ﬁ -a® |_7_T|_' C10s1'ng' the first component and
IHOMEFLY-PT relations: It descends to Zy : Ky — Ay, where anti-symmetrizing, this is the Turaev cobracket.

. . [Example 4 [Ma]. With y € & and Ay(y) its

o _ (M2 _ oh)2
K = 7</ (K —N =@ -e™?)) C) ascending outer double and 2;(y) its ascen-
A =A/(+—=h— or =h==) ding inner double we getns: 7 —» T® 7. A-

ascending escending

and deg? = (1, 1). fter some massaging, it too becomes the Tu-
Proof of Fact 2. Z(7) — Z(X) = X - (72 - e7"172) raev cobracket.
- . (th/z _ e—hX/z) _ ((Bh/Z _ (B—h/z))(_ O The rest is essentially Exercises: 1. Lemma 1? 2. A?
3. Fact2? 4. A''? Especially, A/'(Q) = |A|! 5. Explain
m Le, Murakami why Kontsevich likes our ’s. 6. Figure out ¢, i =1,...,4.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2208/
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Kashaev's Signature Conjecture

CMS Winter 2021 Meeting, December 4, 2021
Dror Bar-Natan with Sina Abbasi

Agenda. Show and tell with signatures.

Abstract. | will display side by side two nearly identical computer programs whose
inputs are knots and whose outputs seem to always be the same. I'll then admit,
very reluctantly, that | don't know how to prove that these outputs are always the
same. One program | wrote mostly in Bedlewo, Poland, in the summer of 2003 and
as of recently | understand why it computes the Levine-Tristram signature of a
knot. The other is based on the 2018 preprint On Symmetric Matrices Associated
with Oriented Link Diagrams by Rinat Kashaev (arXiv:1801.04632), where he
conjectures that a certain simple algorithm also computes that same signature.

If you can, please turn your video on! (And mic, whenever needed).
http://drorbn.net/cms21

Bed(K_, v ] := Kas[K_, w_] :=

mdule[((, r, XingsByArmpits, bends, faces, p, A, is},
t=l-w; r=tet’;
XingsByArmpits =
List@ePD(K] /. x 1 X[i , j ,k , L 1=
If[PositiveQ[x], X.[-1, J, ky =L1, X_[=J, R, L, =115
bends = Times @@ XingsByArmpits /.
_IXI0a_s by c_y A1 PoyoaPs,
faces = bends //. Px_,y Py ,z_ # Px,y,:3
A = Table[®, Lengthefaces, Lengthefaces];
DO[)S = Position[faces, #][1, 1] & /@ List @@ x;

Pe,-b Pd,-c3

Alis, is] += xf[neaa[x] === X,,

Module[(u, v, XingsByArmpits, bends, faces, p, A, is},
u=Re[s¥?]; v = Re[s];
XingsByArmpits =
List@@PD[K] /. x :X[i_, j_, k , L ]
If[PositiveQ[x], X, [-1, J, ks L1, X-[=J, ks L, =111
bends = Times @@ XingsByArmpits /.
_[X1la_, b_, c_, d_] *Pa,-a Pv,-a Pc,-b Pa,-c3
faces = bends //. Px_,y Py_,z_ = Px,y,25
A= Table[0, Lengthefaces, Lengthefaces];
no[is = Position[faces, #][1, 1] & /e Listeex;

A[is, is] += If[Head[x] ===X,,

D o
e

,t.]'
-t e

oot -2ttt
-t* @ t* e
-2t t r

2

-r -t
-t* o
2t t -r

t e

vuilu vua1l
ulua1 ulu
Tuvul”’[1uv ]’
ulu1 ulu

x, XingsByArmp)ts)];
(MatrixSignature[A] - Writhe[K]) /2 ] B

ReRc

x> X)ngsEyArmplts)];

MatrixSignature[A] | ;

http://drorbn.net/cms21

Bed(K_, ] = Kas(k_, v ] :=

mdule[(t, r, XingsByArmpits, bends, faces, p, A, is}, Module[(u, v, XingsByArmpits, bends, faces, p, A, is},
t=l-w; r=tet’;
XingsByArmpits =
List@ePD(K] /. x 1 X[i , j ,k , L 1
1f[PositiveQ(x], X, [-1, J» ks ~L1, X_[~F, by L, =111
bends = Times @@ XingsByArmpits /.
_IX10a_, b_y €y @_1  Pay-g Pby-a Pe,-b Pa,-c3
faces = bends //. Px_y_Py_,z_ * Pry,c
A = Table[@, Lengthefaces, Lengthefaces];
DO[)S = Position[faces, #][1, 1] & /@ List @@ x;

u=Re[4']; v=Re[s];
XingsByArmpits =
ListeePD[K] /. x:X[i_, j ,k , L ]
If[PositiveQ([x], X, [-1, J, ky =L1, X [-J, By L, =115
bends = Times @@ XingsByArmpits /.
_[X1la_, b_, c_, d_] *Pa,-a Pv,-a Pc,-b Pa,-c

_oy_Py_,z_ ™ Px,y,z3
A = Table[@, Lengthefaces, Lengthefaces];
no[is = Position[faces, #][1, 1] & /e Listeex;

ALis, is] += T [Head [x] === X,, ALis, is] += Tf [Head [x] === X,,

-r -t 2t t° root 2ttt vuilu vuilu

[»t' o t* a]’ -t* o t* a]]’ [ulul] _[ulul]]
2t t -r -t* -2t t r  -t* Tuvul?Tl1uvull
t e -t e t e -t o ulu1 ulu1

It X)ngsEyArmplts)]; x> XingsByArmp)ts)];

MatrixSignature[A] ] 5 (MatrixSignature[A] - Writhe[K]) /2 ] H

http://drorbn.net/cms21

Label everything!

13

11

10

PD[X[10,1,11,2], X[2,11,3,12],...]  {X_[-1,11,2,—10], X_[-11,3,12,-2],...}

http://drorbn.net/cms21

These slides and all the code within are available at http://drorbn.net/cms21.

(I'll post the video there too)

http://drorbn.net/cms21

Why am | showing you (code(y?
» | love code — it's fun!

> Believe it or not, it is more expressive than math-talk (though I'll do the
math-talk as well, to confirm with prevailing norms).

» It is directly verifiable. Once it is up and running, you'll never ask yourself “did
he misplace a sign somewhere"?

http://drorbn.net/cms21

Verification.

Once[<< KnotTheory" ]

Loading KnotTheory™ version of February 2, 2020,
Read more at http://katlas.org/wiki/KnotTheory.

10:53:45.2097.

MatrixSignature[A_] :=
Total[Sign[Select[Eigenvalues[A], Abs[#] > 10712 &]11s
Writhe[K_ ] := Sum[If[PositiveQ[x], 1, -1], {x, ListeePDeK}];
Sum[w = et fendomieal (0,271 ged[K, w] = Kas[K, w], {10},
{K, AllKnots[{3, 10}]}]
- KnotTheory: Loading precomputed data in PD4Knots"
2490 True

http://drorbn.net/cms21

3
3
Lets run our code line by line. .. 2 11
PD[8,] = PD[X[10, 1, 11, 2], >
X[2, 11, 3, 12], X[12, 3, 13, 4],
X[4, 13, 5, 14], X[14, 5, 15, 6], 10
X[8, 16, 9, 15], X[16, 8, 1, 7],
X[6, 9, 7, 10]1]; 5 4
9 7
K= 8;;
16
8

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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XingsByArmpits =
ListeePD[K] /.
X:X[1_ ,J s,k , L 1=
If[PositiveQ[x], X,[-1, j, k, -L1,
X_[-J, k, L, -1]]

(X_[-1, 11, 2, -1@], X_[-11, 3, 12, -2],
X_[-3, 13, 4, -12], X_[-13, 5, 14, -4],
X_[-5, 15, 6, -14], X, [-8, 16, 9, -15],
X.[-16, 8, 1, -7], X_[-9, 7, 18, -6]}

A = Table[0, Lengthefaces, Lengthefaces];

A // MatrixForm

© 000 0000600
© 000000000
© 0 000000O0O0
© 000000000
© 000000000
© 000000000
© 000000000
© 000000 O0O0O0
© 0000000000
© 000000000

X = XingsByArmpits[1]
X [-1, 11, 2, -10]
faces

P-13,4,-13 P-11,2,-11 P-5,14,-5 P-3,12,-3 Ps8,16,8 P6,-15,-9,6
P9, -16,7,9 P1e,-7,-1,10 P-10,-2,-12,-4,-14,-6,-10 P1,-8,15,5,13,3,11,1

is = Position[faces, #][1, 1] & /@ List ee x

{8, 10, 2, 9}

Do[is = Position[faces, #][1, 1] & /@ List ee x;

A[[is, is] += If[Head[x] === X,,

)

{x, Rest@XingsByArmpits} ]

cC »m o<
B o RrCc
€< c R
R cRCc
cC B o<
B o RrCc
€< c R
R cRCc

http://drorbn.net/cms21

http://drorbn.net/cms21

http://drorbn.net/cms21

http://drorbn.net/cms21

bends = Times @@ XingsByArmpits /.
_[Xl[a_,b ,c_ ,d ]
Pa,-d Pb,-a Pc,-b Pd,-c
P-16,7 P-15,-9 P-14,-6 P-13,4 P-12,-4 P-11,2
P-10,-2 P-9,6 P-8,15 P-7,-1 P-6,-10 P-5,14
P-4,-14P-3,12 P-2,-12 P-1,10 P1,-8 P2,-11
P3,11 Pa,-13 Ps,13 Ps,-15 P7,9 P8, 16 P9,-16
Pie,-7 P11,1 P12,-3 P13,3 P14, -5 P1s,5 P1s,8
faces =bends //.px ,, Py ,2 #Pxy,z
P-13,4,-13 P-11,2,-11 P-5,14, 5 P-3,12,-3
Ps, 16,8 Ps,-15,-9,6 P9,-16,7,9 P10,-7,-1,10

P-1e,-2,-12,-4,-14,-6,-10 P1,-8,15,5,13,3,11,1

Do|is = Position[faces, #][1, 1] & /@ List @@ x;

A[is, is] += If|Head[x] === X,,
vVvudlu Vvudlu
ulul1l ulul J
1 uvu|’ 1uvu l’
ulul ulul

{X, XingsByArmpits} |;

A[is, is] += I'F[Head[x] === X,,
vulu vulu
ulul ulul1l .
Tuvul’ [1uvu ]’
ulul ulul
A // MatrixForm
© 0 00000 ©0 0 0
0 -v 0 0606006 -1 -u-u
© 0 00000 ©0 0 0
© 0 00000 0 0 0
O 0 00000 0 0 0
© 0 00000 0 0 0
© 0 00000 ©0 0 0
0 -1 00000 -v -u -u
© -u©® 00600 -u-1-1
© -u®eoeoeo -u-1-1
A // MatrixForm
-2v @ -1 -1 0 ] )
0 -2v 0@ -1 0 0 )
-1 e -2v o 2] -1 2]
-1 -1 2] -2v 0 0 )
] ) 2] 2] 2 1 2u
] ) -1 2] 1 1-2v )
] ) ) 0 2u ) -1+2v
2] -1 2] 2] 1 -1 o
-2u -2u -2u -2u © -2u -1
-2u -2u -2u -2u 2u 0 2

-2u
-2u
-2u
-2u

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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Recall, is = {8,10,2,9}

http://drorbn.net/cms21
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Plot[w=e""; u=Re[w'?]; v=Re[w];

(MatrixSignature[A] - Writhe[K]) /2,

{t, 0, 27\'}]
ol
3l
oL
4L
1 2 3 4 5 6

http://drorbn.net/cms21

Kashaev for Mathematicians.
For a knot K and a complex unit w set u = R(w/2), v = R(w), make an F x F
matrix A with contributions

v

v

and output 3(c(A) — w(K)).

http://drorbn.net/cms21

Why are they equal?

| dunno, yet note that

» Kashaev is over the Reals, Bedlewo is over the Complex numbers.
» There's a factor of 2 between them, and a shift.

...s0 it's not merely a matrix manipulation.

http://drorbn.net/cms21

Thank You!

http://drorbn.net/cms21

Plot[Bed[Knot[8, 2], "], {t, @, 27}]

4

http://drorbn.net/cms21

Bedlewo for Mathematicians.

For a knot K and a complex unit w set t =1 —w, r = 2R(t), make an F x F
matrix A with contributions

(conjugate if going against the flow) and output o(A).

http://drorbn.net/cms21

Theorem. The Bedlewo program com-
putes the Levine-Tristram signature of K
at w.

(Easy) Proof. Levine and Tristram tell . Y AT
us to look at o((1 — w)L + (1 —w*)LT), | i \ |
where L is the linking matrix for a Seifert ] LW 4
surface S for K: Lj = Ik(v,7;") where E )
7 run over a basis of Hy(S) and ~;"

is the pushout of 7;. But signatures r,-'--'-'.'.d_-:ﬂ-'"" -
don't change if you run over and over- r | |
determined basis, and the faces make ' lIeP-. ‘-' 4
such and over-determined basis whose - =% T

linking numbers are controlled by the !

crossings. The rest is details. Art by Emily Redelmeier

Video and more at http://www.math.toronto.edu/~drorbn/Talks/CMS-2112/
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Dror Bar-Natan: Talks: LearningSeminarOnCategorification-2006: Thanks for inviting me to speak in my basement! (=] =]

The Alexander Polynomial is a Quantum Invariant in a Different Way wepi=http//drorbn net/cat20/ ejais
P On a chat window here I saw a [The Yang-Baxter Technique. Given an algebra U (typically some

comment “Alexander is the quantum (g) or ﬂq(g)) and suitable elements R, C, K

ig/(1|]1) invariant”. I have an opinion R:Z ;@b e U®U with R :Z a,®b, and C.C™'eU, I

about this, and I'd like to share it. First, < B RN

some stories. form Z(K) = Z a;C”'byajb; ® b ay. a’ b W
I left the wonderful subject of Lk .

IProblem. Extract information from Z.

Categorification nearly 15 years ago. . L. .
The Dogma. Use representation theory. In principle finite, but slow.

[t got crowded, lots of very smart people 12

had things to say, and I feared I will have [Example 1. Let a := L(a, x)/([a, x] = x), b := a* = (b, y), and | Gentle’s Agreement.
nothing to add. Also, clearly the next 8 = b>a =Db® awith [a,x] = x, [a,y] = -y, [b,-] = 0, and Everything converges!
step was to categorify all other “quantum [*, ¥] = b and with deg(y, b,a, x) = (1,1,0,0). Let U = U(g) and

invariants”. Except it was not clear what | R = e”®"®* ¢ U® U orbetter R; = e e U, @ U 5 and C;= e bil?,

“categorify” means. Worse, I felt that Theorem 1. With “scalars”:=power series in {b;} which are rational functions in {b;} and

( ~a
1

I (perhaps “we all”) didn’t understand g .— @b}, With Roland
“quantum invariants” well enough to try the “j over j~  categorify us! van der Veen
to categorify them, whatever that might a tangle w/o .linking numbers scalars a docile perturbation for other
Inean closed components (mtegers)\ \ Lie algebras; semisimple algebras
. have a hidden parameter €!
I still feel that way! I learned a lot since -1 l.jbia -+qijyix . feen 2) o
2006, yet I'm still not comfortable with Z(K) = ybax w ¢ / ](1+EP1 + € Pz + ...
quantum algebra, quantum groups, and T T Continues
quantum invariants. I still don’t feel that B o . Lev Rozansky
. K normal ordering a scalar; if K is a long knot,
[ know what God had in mind when She at ybax order the Alexander poly A(T") categorify me! s 4
created this topic. : : =
IE le 2. L =A =1 Th . Full eval
Yet I'm not here to rant about my xamp e eth (p, ;)/([p, x] -, ) be eorem 3. Full evaluation via
hil hical quandaries. but onlv about the Heisenberg algebra, with C; = '/~ and 1| x Xj
p .l OSOp 1ca q 5 Y Ri‘ — @t/zet(17i7pj)xj' Ijust'tg]d yol}l].lhe \?/hn.ledAle.);ander (x/: N) N 0 Ti] _ 1 (1)D
things that I learned about the Alexander | "/ (et_l)z“’fi f;‘yr‘ ing else is details. N7 j> j7 N i 0 -7
polynomial after 2006. Claim. R;; = Opx (‘B b xj)j‘ P
Yes, the Alexander polynomial fits [Theorem 2. Z(K) = O, (w‘leq”l"‘xi) where wiwy [ X1 Xo
within the Dogma, “one invariant for |, and the ¢/ are rational functionsin T = ', K1 U K2 = P1 | A 0 (2)o
every Lie algebra and representation” [[n fact w and wq”/ are Laurent polynomials Py |0 A
(it’s gl(1]1), T hear). But it’s better to (categorify us!). When K is a long knot, w | w | x; x;
think of it as a quantum invariant arising is the Alexander po]ynomial' pi | @ l[,’ 9 hm;cj
by other means, outside the Dogma. : ) 1 2 pily 6 € — 3)
Alexander comes from (or in) Packaging. Write Oy (a) e /) as . _
practically any non-Abelian Lie algebra. w ‘ Xy X2 - Cley o=
Foremost from the not-even-semi- plqgn ¢7 (1+yw | Xk
simple 2D “ax + b” algebra. You get| Ep..x..[w. Q] < [ Pk 1+8- & a)(l I (]1_+ay)€
a polynomially-sized extension to tangles . . < . (-6)¢ 6)¢ — e
using some lovely formulas (can you ) ) ) ) : Y+ =T 1y
categorify them?). It generalizes to [The “First Tangle”. Z(K) = “T-calculus” relates via A <> I—AT and has
higher dimensions and it has an organized E, [ZT—I (T—l)(Pl—Pz)(Txl—xz)] slightly simpler formulas: w — (1 — B)w,
family of siblings. (There are some r- 2= K 0
s . . @ IB + ad €+ 22
questions too, beyond categorification). 2-77! X1 X \J y & €|— ( 1a—wﬁ ¢g)
I note the spectacular existing =, | LD 6 v = ¢+ Et+ip
: : - 2T-1  2T-1
categorlﬁ?atlon of Alexander by Ozsviath TA-T) 71 1 2 Why Should You Categorify This? The
and Szabd. The theorems are proven and P2 2T-1  2T-1 .
implest and fastest Alexander for tangles,
a lot they say, the programs run and fast [(v-) Tangles. Generated by {*2, N}! . . L
. e easily generalizes to the multi-variable
they run. Yet if that’s where the story i | d
ds, She has abandoned us. Or at least pase, generalizes o v-tangles and w-
eg s’d 4 me: a simol : i~ b tangles, generalizes to other Lie algebras.
abim one }rlne. a simpleton will never be In fact, it’s in almost any Lie algebra,
2 If to cate up.l b ficati and you don’t even need to know what
you care only about categorification, is gl(1]1)! But you'll have to deal with
the take-home from my talk will be a . o
. . . 5t1tch1ng denominators and/or divisions!
challenge: Categorify what I believe is -
. . Note. Example 1 «~» Example 2 via g < b(z)
the best Alexander invariant for tangles. | There’s also strand doubling and reversal. .. via (v, b, a, x) > (=tp, 1, px, x).

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/
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The PBW Principle Lots of algebras are isomorphic as vector
spaces to polynomial algebras. So we want to understand arbi-
trary linear maps between polynomial algebras.

Convention. For a finite set A, let z4 = {Zi}iea and let
Lo =2} = Lidiea. (p,x)" = (m,¢)
The Generating Series G: Hom(Q[z4] — Q[zg]) — Q[[£4, z5]-
Claim. L € Hom(Q[z4] — Q[zg]) ? Qlzplllgall > £ via

n
G = Z %L(ZX) = L(‘BZ”EA (az,,) =L = geexLiaiin’
neNA
G OW) = (Pl L), _, forpeQlzal

Claim. If L € Hom(Q[z4] — Qlzgl), M € Hom(Q[zg] —
Qlzcl). then G(LJM) = (G(L)lzy-5, GM),,
Examples. ¢ G(id: Q[p, x] — Q[p, x]) = ™+,
« Consider R;; € (b; ® b)[7] = Hom (Q[1 - Qlpi, xi, pj» x,1) [£].
Then G(R;j) = @ =D@i—p)xj — T=1D(pi—ppx;_
Heisenberg Algebras. Let b = A(p,x)/([p,x] = 1), let
O;: Qlpi, xi1 — b; is the “p before x” PBW normal ordering map
and let im;/ be the composition

©k
br Qlpk, xk].

0:80;
Qlpi, xi, pj»xj] — bh;®Y;
Then Q(hm;(]) = @ éimj+ (A ) pr+(EirEDar
Proof. Recall the “Weyl CCR” ef*e™ = e "™ ¢t*, and find
Q(hm;(j) — @ﬂipi+§ixi+”jpj+§jxj//Oi ® ©J'//m;cj//©l:1
— (Bﬂiﬂiefixieﬂ/n/@fjxj//m;cf//@;l — eﬂipkefixk®ﬂjﬂk®§jxk//@l:1

— e—fﬂje(ﬂi‘*—ﬂj)me(fﬁfj)xk//@]:l — e—fiﬂj+(ﬂi+ﬂj)l7k+(-fi+§j)xk_

GDO := The category with objects finite sets and
mor(A — B) = {L = weQ} C Qliga, z8ll,
where: e w is a scalar. e Q is a “small” quadratic in {4 U zp.

e Compositions: L/M = (.£|z,-—>6;,. M)

Compositions. In mor(A — B),

4i=0"

0= ) Ejfzj+ Z Fiidid) + Z Gijziz)s
i€A, jeB 1]EA tjeB R. Feynman
(remember eF=1+x+xx/2+xxx/6+...)

E1E2+E1F26 Ez
+EF>,G F,GE,

NG HEHE

= §) E\(F,G1)'Ey
greek

ldtm

greek ldtln
where @ E = E\(I-F2G\) 'E; o F = Fy + E{F>(I - G Fy)'ET
¢ G =Gy +EIG|(I- F,G))'E;  w = wywy det(I — F,Gy)™'/?
Proof of Claim in Example 2. Let ®; := ¢ PP)% and
D, = Oy, (" DPPIY) = O(P). We show that @y = P, in
(b;®b )] by showing that both solve the ODE 9,® = (p;—p;)x;®
with @|;,—9 = 1. For @ this is trivial. ®;|,—¢9 = 1 is trivial, and
9, @2 = 0(3,¥) = O(e'(pi — p)x,;¥)

(Pi—pjp)xjP2 = (pi—p)x;0O) = (pi—p;)O(x;¥ — 8,,¥)
=0 ((p,-—pj)(xj‘I’ + (03[ - l)ley)) = (O)((Bt(pi_pj)xj\{}) a

Implementation. Without, don’t trust!

CF = ExpandNumerator@xExpandDenominator@xPowerExpand@xFactor;

Epz_ sp1_ [@1_, Q1_]1 Epz 42 [@2_, Q2_] ~:= Eagyaz-pys2 [#1 2, Q1 + Q2]
(Epz_ 1 [@1_, Q1_1 // Epz o2 [@2_, Q2_]1) /5 (B1* === A2) :=
Module[{i, i, E1, F1, G1, E2, F2, G2, I, M = Table},
I = IdentityMatrixeLengtheBi;
El=M[9:,501, {i, A1}, {J, B1}]; E2 = M[01,502, {i, A2}, {], B2}]1;
F1=M[8:,5Q1, {i, A1}, {j, A1}]1; F2 =M[04,502, {i, A2}, {j, A2}];
Gl = M[064,5Q1, {i, B1}, {j, B1}]; G2 = M[94,5Q02, {i, B2}, {J, B2}];
En1.52 [CF[wl w2Det[I - F2.61]%2], CF@Plus[

If[Al === {} VB2 === {}, @, AL.E1.Inverse[I - F2.G1].E2.B2],
1 .
I-F[Al === (3, 0, S AL (F1+E1.F2.Inverse[I - G1.F2].E1) .Al],
1 .
I-F[Bz === {3}, O, ;BZ.(GZ+E2 .Gl.Inverse[I—F2.Gl].E2).BZ”]]

A_\B_ :=Complement[A, B];
(Eaz_ 1 [@1_, Q1_1 // Epz 42 [@2_, Q2_]1) /5 (B1* =1=A2) :=
E a1y (a2\g1*) 81082+ [#15 Q1 + sum[Z* &, {&, A2\B1*}]] //
Ep1+yazsp2y (s2\az*) [#2, Q2 + sum[z* z, {z, BI\A2*}]]
t= (U%) s

{p*s X*, 7, £} = {7, &, P, X}; (u_i_)’

L_List* := #* & /@ L;

. -1/2 X v Y
Rij = Eqafpixippx} [T (1-T) pix;+ (T-1) pix;];
Rii = Eoaforong) [TV (L-T7) b+ (T72-1) poxs]s

P -1/2 .
Ci t=Egap,x) [T % 0];5
C. oo 1/2 .
Ci 1= Egup,x [TV 0]5

hmi L5 ok 2= B, 60,m5,65)>tprxp) [1s =i 7 + (700 + 715) P+ (§i + &5) Xe]
]E()avsi[”n:_) Q_1h := Module[{ps, xs, M},

ps = Cases[vs, p_]; xs = Cases[vs, X_];

M = Table[«i, 1+ Lengtheps, 1+ Lengthexs];

MI2 55, 2 ;5] = Table[CF[ai,jQ]: {i, ps}, {J, xs}1;

MI2 55, 11 = ps; MI1, 2 53] = xs;

MatrixForm[M],]

Proof of Reidemeister 3.
(R1,2 Ra,3Rs,6 // hmy 4,0 hmy 5,5 hms 6,3) ==

(R2,3R1,6 Ra,s // hmy 4,3 hmy 5,5 hms 6,3) i — L

True O
The ““First Tangle”.

Factor /@
(2 =R1,6 C3R7,4Rs,2 // hmy,3,1 // hmy 451 // hmy 5,1 // hmy 6,1 // hmz,7-.z)

-1+2T  (-1+7T) (p1-p2) (TX1-X%p)
]E{)»(p1.pz,><1,><2){ T 1427 ]

z, ‘k
1+2T -
e X X
-T+T2 1-T

P1 1427 -1427 %
P T-12 “14T
2 Trat 121 /h

The knot 8.

z = Ru2,1 Ry7 Re3 R4, 11 Rue, 5 Re,13 Rua, Rio,153
Table[z = z // hmy, {k, 2, 16}] // Last

—_— | +—2
1-4T+8T?-11T3+8T*-4T°+T® i
E ()= p1,xa) [ T3 s 9]
Proof of Theorem 3, (3).
a 3 6
{ Y1 = E (3o (p1,x1,p2,%2,P3,%3) [‘": {P1s P25 P3}-| ¥ 6 € ] s X, x3}]] ’
¢ ¥ B h
(¥17// hm1,z->e)h}
W X1 X2 X3 w+Yw Xe X3
a+Bry+BY+6-085 €-0€+O0+Y O
{ P oa B O 5 Pe 1ey 1oy }
P2 ¥ 6 € $-8 prUey ¥ E+yE-€ 0
ps ¢ ¥ E/n P3 1oy 1oy h [m]
References. On weP=http://drorbn.net/cat20

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LearningSeminarOnCategorification-2006/
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Dror Bar-Natan: Talks: Toronto-1912: wef:=http://drorbn.net/to19/ E E N
Geography vs. Identity 5 ﬂ \
[=]

Thanks for inviting me to the Topology session!

IAbstract. Which is better, an emphasis on where things happen
or on who are the participants? I can’t tell; there are advantages
and disadvantages either way. Yet much of quantum topology

Geography view:

n=A 11 m=l A1 wm=[ A

Identity view:

SO X 1S 5.
/\,\W X182
3 At x strand 1 crosses strand 3, so x i

S 013.

1

seems to be heavily and unfairly biased in favour of geography. %E:h
Geographers care for placement; for them, “
braids and tangles have ends at some distin-
iguished points, hence they form categories

whose objects are the placements of these
points. For them, the basic operation is a binary ‘“stacking of (a
tangles”. They are lead to monoidal categories, braided monoidal
categories, representation theory, and much or most of we call

'(T) € Ry X Mgxs(Rs) =

The Gold Standard is set by the “I'-calculus” Alexan-
der formulas (wef/mac). An S-component tangle 7 has

{%%} with Rg = Z(T,: a € S}):

“quantum topology™.

So 0 A

wla b S
‘ala B 6 m’ ((l—ﬂ)w‘ : 2 Sée\
N ¢ Y+ig e+i5
bly ¢ € 71,7T,>T. S g+l om0
Sl¢o vy = -5 = 1

ntity persists even if one crosses or t T
is being crossed. The key opera-
tion is a unary stitching operation

etc. See wef/reg, wef/kbh.

Identiters believe that strand ide- * b me RT c

mgb , and one is lead to study meta-monoids, meta-

t ~ [The Gassner Representation of AB, acts on V = )

R" = Z[tfl,...,t,;—'l]” =R(vi,...,v,) by

Hopf-algebras, TijVk = Vi + Okt = DV = vi). Betty Jane
Gi ,j [£]1:=¢&/eVr »Vp+8g,; (ti-1) (vj-vi) // Expand Gassner

Braids.

Unnu G

BB > S EB*S/()’iTZT)/jWheIlTiZj, T(i +

n’t see topology very well).
IProof. Going left, y; — o1 i + 1). Going

i

vB views of o7

[...

Geography: (better topology!) |co-dimensional representation. It then descends to PB, as a finite-
YiYr = viyi when |[i — k| > 1 rank R-linear representation, with lengthy non-local formulas.
GB = (y;) I =B. G hers: G . b : .
ViYie1Yi = YVise1YiYitl eographers: Gassner is an obscure partial extension of Burau.
Identity: (captures quantum algebra!) [[dentiters: Burau is a trivial silly reduction of Gassner.

— 0jou = ooij when |{i, j,k, [} = 4 _ The Turbo-Gassner Representation. With the same
IB = {0}) D = BB.

Tij0ik0 jk = O jkOik0ij when |{l,j,k
[Theorem. Let § = {7} be the symmetric group. Then B is both  |R{vg, vy, u;u jwi) by

(and so PAB is “bigger” then B, and hence quantum algebra does-

map o;; = (j—1j-2 ... Dy i+1 ... j)andif i > juse

(baS3 // G,z /1 Gu3 /1 Ga,3) = (b33 // Gao,3 /1 Gz /1 Gaz) “pemen”

True famous

IS, acts on R" by permuting the v; and the t;, so the Gassner re-
presentation extends to vB, and then restricts to B, as a Z-linear

J1=3 R and V, TG actson Vo (R"® V) & (S’V ® V*) =

1)=(j+1)) T6: 5 [£] i= £ /. {

4

V/L 3')Vk+5k,j ((ti—l) (Vj—Vi) +Vi,j—Vi,i) + i
Ok,i (Uj = Ui) Uj Wy, With Roland
ot if i < i Vi e Ve + (B -1) van der Veen
nehh e = (6k,5 (Vi,5 - Vi,10) + (61,1 - 81,5t t5)
(U + 81,5 (ti-1) (uj-ui)) uiw), Gassner motifs

uk_ = U + 5;;,_7‘ ('ti - 1) (Uj - Ui) K
We > W + (6k,j = 5;;)1) (t;l = 1) Wj} // Expand

bas3 = {Vn V2, V3, V1,15 V1,25 V1,35 V2,15 V2,25 V2,35 V3,1,

Adjoint-Gassner

Z[r']" = R(vy,...,v,) by
OijVk = Vg + (Skj(t - 1)(Vj - V,‘).

(bas3 = {vi1, vz, v3}) // B2

The Burau Representation of AB, acts on R"

6 /: 6i ,; :=If[1=7,1,0]; wef/code
Bi ,j [£1:=¢&/0Ve 2 Vp+6k,; (t-1) (vj-vi) // Expan

V3,25 V3,3, U% Wi, U% W2, U% W3, Uj Uz W1, Uj Uz Wz, Up U W3,
Uz U3 Wy, Uz U3 Wz, Up U3 W3, U% Wi, U% W2, U% W3, Uz U3z Wy,
Uy Uz Wa, Up Us W3, U3 Wi, USWa, U] W3};
(ba53 // TGLz // TG1,3 // TGZ,3) == (basB // TG2,3 // TGL3 // TGl,z)

d Wemer tpye Like Gassner, TG is also a representation of PB,,.
Burau . .
I have no idea where it belongs!

{Vi, Vi —tvy+tvy, vi}
bas3 // B1,z // B1,3 // 32,3
{vl, vi-tvy+tvsy, vl—tv1+tv2—t2v2+t2v3}

bas3 // Ba,3 // B1,3// Ba,2
{vis vi-tvistvy, vi-tvi+tvy-t?vy+t?vs}

representation extends to vB, and restricts to B,,.
IWith this, y; maps v; B Vi1, Viel B i 1-)vii1,

IS, acts on R" by permuting the v; so the Burau 1:5:'-

and otherwise v; — vy.

My talk tomorrow, at the chord diagrams everywhere session: More Dror: wef/talks
- | i -

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Toronto-1912/
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Dror Bar-Natan: Talks: Columbia-191125:

v . ‘With Roland
Some Feynman Diagrams in Pure Algebra van der veen

Thanks for allowing me in Columbia U!
wepB:=http://drorbn.net/col9/
Slides w/ no handout/URL should be banned!

Abstract. I will explain how the computation of compositions
of maps of a certain natural class, from one polynomial ring into
another, naturally leads to a certain composition operation of
quadratics and to Feynman diagrams. I will also explain, with
very little detail, how this is used in the construction of some
very well-behaved poly-time computable knot polynomials.

The PBW Principle Lots of algebras are isomorphic as vector
spaces to polynomial algebras. So we want to understand arbi-
trary linear maps between polynomial algebras.

Gentle Agreement. Everything converges!

Convention. For a finite set A, let z4 = {z;j}iea and let
da = {2z = Jiliea. O, b,a,x)" =(.B,a,.&)
The Generating Series G: Hom(Q[z4]— Q[zg]) — QllZa, z51l-
Claim. L € Hom(Q[za] — Qlzg]) —;—> Qlzplll{all > £ via

$hn .
G(L) = zN;A n_/;L(ZA) = L(ezaEA a a) =L= greek'Elatin’
G DOW) = (P, £),_, forpeQlal
Claim. If L € Hom(Q[z4] — Q[zg]), M € Hom(Q[zp] —
Qlzc)). then G(LJM) = (G(L)lz—a, GM), -
Basic Examples. 1. G(id: Q[y, a, x] = Q[y, a, x]) = @W+ea+ex,

2. The standard commutative prod- my!
uct m;’ of polynomials is given by Qlzl; ® Qlzl; — Qlzlk
Hence G(m) = ” ij ”

Zi»Zj ™ Zk- my
Qlzi» zj] —— Qlzx]

m;‘{j(efiZﬁ{ij) = Wi+l

3. The standard co-commutative co- Al
product A;k of polynomials is given Qlz]l: — Qlz]; ® Qlzlk
by zi — zj + z. Hence G(AY) = ” AL ”
Ai_k(efiz,') — ®évi(Z/+zk). Q[Zi] _>Q[Zja Zk]

J

Heisenberg Algebras. Let H = (x,y)/[x,y] = K (with /i a
scalar), let O;: Q[x;,y;] — Hj is the “x before y” PBW order-
ing map and let hmzj be the composition

0i®0; my! o'
Qlxi, yi» xj,y;] — H; @ Hj Hy Qlxk, ykl-
Then G(hm') = e, where Ay = —hniéj+(Ei+E)xi+@i+n,)Y.-
Proof 1. Recall the “Weyl form of the CCR” ePeé* =
e MEREXEY | and compute
g(hmzj) = &XitYitE XY //@i ® O j//mj(j //(O),:1
— (Bf,-xi(Bmy,-efjxj@n,yj-//m;;j//@;l — (Bé?iXkem)’k(ijXk@myk//@;l

= @ i€ p&itéNxe ®(m+77,')yk//©]:1 = M,

Proof 2. We compute in a faithful 3D representation p of H:
e 1680 0 0 0 0 0 1 (wef/hm)
{i: [a 0 a],9= [e D) n],é: [a o e]};
000 000 0 00
(R.9-9.8=ne, R.&=2.%, 9.8 = 2.9}
{True, True, True}

A=-hni&5c+ (Ei+&5) Xk + (N1 +75) Yis
SimplifyeWith[{E = MatrixExp},

E [f( §i] E [9 771] E [)? §j] E [9 T7j] ==
(% 0.] £ [ 0y 8] -2 [2 00, ]

True

[=15[=]
2 i

[=]7%
A Real DoPeGDO Example (DoPeGDO:=Docile Perturbed
Gaussian Differential Operators). Let sl5, = L(y,b,a, x) sub-
jectto [a, x] = x, [b,y] = —€y, [a,b] =0, [a,y] = —y, [b, x] = €x,
and [x,y] = ea + b. Sot = ea — b is central and if e !,
sls, = sb @ (t). Let CU = U(slS,), and let cm;! be the com-
position below, where O;: Qly;, b;, a;, x;] — CU,; be the PBW
ordering map in the order ybax:

my

CU; & CU;, cu;
T@i,.f em! T@’k

Qlyi, bi,ai, xi, ¥}, bj, aj, x;1 —— Qlyi, bi, ax, xi]

Claim. Let (all brawn and no brains)

e~ i=<Pi log (1 + en&)
A= (775 + —— b+
€

j
T+ et )Yk + (ﬁi +Bj+

g—“.f—fﬁjg.
(CYZ‘ + @ + log(l + Enjé:i))ak + (T)]f[ +§j))€k
Jot
Then (Bi],’y,’+ﬁ,‘b,‘+(l,'a,‘+§,‘)€,’+7]_,'y/'+B/'bj+(Yja_,'+§jx_,'//©i’j//cm;cj — (BA//O]{,

and hence Q(cmij ) = el

Proof. We compute in a faithful 2D representation p of CU:

{9-(23):6-(3 %) 8- (52)%-(35)) (el
{ a
b

-

o
€
a.X-X.
b.x - x.
{True, True, True, True, True}
SimplifyeWith[{E = MatrixExp},
E [ni 9] E [B1 B] E [ai 5] E [§1 )’E] E [nj fl] E [B] B] .
E[a;a].E[&5 X] = E[¥ oy, 4] .E [B op A].E[80,,.4].
£ [ 0,,4]]
True
Series[A, {e, 0, 2}]
(ak (oq +03) + Yk (ni+e “iny) +
b (Bi+B5+n38i) +Xk (€73 &1 +&5)) +

1 .
(ak N3 &i - Ebk U% E-eykny (Bi+nj&i) -
e i xx &1 (By+nj 51)) €+
73 2 2 lb 3 3 1 —o§ . 2 . . . 2 2
Sy ANF el S beni el e ey (B3 +2Bing & +2n3&F) +
1 .
367”3 Xk Ei (/332'+23j n3 §i+27’7§§%)) e?+0[e]?

Note 1. If the lower half of the alphabet (a, b, @, 8) is regarded
as constants, then A = C + Q + > 1> €*P® is a docile perturbed
Gaussian relative to the upper half of the alphabet (x,y,&,n): C
is a scalar, Q is a quadratic, and deg P® < 2k + 2.

Note 2. wt(x,y,&,n5a,b,a,8;¢) =(1,1,1,1;2,0,0,2; -2).

Quadratic Casimirs. If 7 € g ® g is the quadratic Casimir of a
semi-simple Lie algebra g, then &, regarded by PBW as an ele-
ment of S®2 = Hom (S(g)®0 — S(g)®2), has a latin-latin domi-
nant Gaussian factor. Likewise for R-matrices.

(Baby) DoPeGDO := The category with objects finite sets'! and
mor(A — B) = {L = wexp(Q + P)} € Qlla, zs, €ll,
where: o w is a scalar.™ e Q is a “small” e-free quadratic in

ZaUzp. T3 e Pisa“docile perturbation”: P = 3;.; €P®, where

deg P® < 2k+2.7 o Compositions: T® LM := (L|zi_,5(i M){:O.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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So What? If V is a representation, then V®" explodes as a func-
tion of n, while in DoPeGDO up to a fixed power of €, the ranks
of mor(A — B) grow polynomially as a function of |A| and |B|.

Compositions. In mor(A — B),

1 1
0= Z Eijlizj+ 5 Z Fijlilj+ 5 Z Gijzizjs

i€A, jeB i,jEA i,jeB
and so (remember, ¢* = 1 + x + xx/2 + xxx/6 + ...)
A w B B w € A o C
: E, s B : j )N —
N a [ Vet ) @[ EE+ERGE
D Gh\ Y2 Go\ /= JF G\ +E F:G\F,G E;
i ) - T S
~P — | =P~ =P — -3EFG)E
— S composition L~ S~ L b r=0
greek latin greek latin  greek

where @ E = E;(I — F2G1) ' E».

e F=F +EFI-G F)El

G =G+ EIGi(I - F2,G)'Es.

o w wlwzdet(l—FzGl)_l.

e P is computed as the solution of a
messy PDE or using “connected Feyn-
man diagrams” (yet we’re still in pure
algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a “weight”’e {0, 1, 2},
and always wtz; + wt{; = 2.

T1. Really, “weight-graded finite sets” A = Ag LI A; LI Aj.

+2. Really, a power series in the weight-0 variables™.

3. The weight of Q must be 2, so it decomposes as Q =
0>0+Q011. The coeflicients of Q¢ are rational numbers while
the coeflicients of Q1; may be weight-0 power series’.
Setting wt e = —2, the weight of P is < 2 (so the powers of
the weight-0 variables are not constrained)>.

In the knot-theoretic case, all weight-O power series are ra-
tional functions of bounded degree in the exponentials of the
weight-0 variables.

There’s also an obvious product

mor(A; — By)Xmor(A; — By) — mor(A| LA, — BjLUB)).

4.

T5.

T6.

Questions. e Are there QFT precedents for “two-step Gaussian
integration”?

e In QFT, one saves even more by considering ‘“‘one-particle-
irreducible” diagrams and “‘effective actions”. Does this mean
anything here?

e Understanding Hom(Q[z4] — Q[zg]) seems like a good cause.
Can you find other applications for the technology here?

QU = Uy(sl5,) = A(y,b,a, x)[[h]] with [a, x] = x, [b,y] = —ey, [a,b] =0,

[a,y] = =y, [b, x] = €x, and xy—qyx = (1-AB)/h, where g = e, A = e,

and B = e. Also A(y,b,a,x) = (y| + B1y2, b1 + by, a; + asz, x; + A1 x2),

SO, b,a,x) = (=B 'y,—b,—a,—A"'x), and R = Y, W/**y*b/ ® a/x*/ jl[k],!.
Theorem. Everything of value regrading U = CU and/or its
quantization U = QU is DoPeGDO:

4 N - A B\
cup  cap
L I
C*leQU m: U U—-U A:U-U®U
B N N ~
. _J - J
tr: U-U/wx=xw deCU*? JeCU® CU

also Cartan’s 6, the Dequantizator, and more, and all of their
compositions.

Solvable Approximation. In 4D Metrized Lie Algebras
sl,, half is enough! Indeed Ivabl
solvable
sly®a,.; = DN, b,6). Now algebras
define sl;, = DN, b,e€d).

Schematically, thisis [, N] = N,
[, N e, and [N,1\]
I + eN. The same process works
for all semi-simple Lie algebras,

the Abelian
algebra

algebras isomorphic

Full DoPeGDO. Compute com-
positions in two phases:

e A 1-1 phase over the ring of
power series in the weight-0 vari-
ables, in which the weight-2 vari-
ables are spectators.

e A (slightly modified) 2-0 phase
over Q, in which the weight-1
variables are spectators.

Analog. Solve
Ax =a, Bx)y=»>b

and at ! = 0 always yields a o sh = sh + 1D
solvable Lie algebra.
[, B pEE b(N) =b: V@™ > N
~ b ;efii: st b~ s 5 e
Conclusion. There are lots of poly-time-computable well-

behaved near-Alexander knot invariants: e They extend to tan-
gles with appropriate multiplicative behaviour. e They have ca-
bling and strand reversal formulas. wef/akt
The invariant for sl / (€2 0) (prior art: weP/Ov) attains
2,883 distinct values on the 2,978 prime knots with < 12 cross-
ings. HOMFLY-PT and Khovanov homology together attain
only 2,786 distinct values.

knot ny Alexander’s w® genus / ribbon | knot ny Alexander’s w® genus / ribbon | knot ny Alexander’s w® genus / ribbon
diag D" unknotting # / diag (M unknotting # / diag D" unknotting # /
) ) 3
oy 1 0/v 30 T-1 1/% 4¢ 3-T 1/%X
© 0 0/ @ T 1/X%X @ 0 1/
0 3731272 +26T-38 74373 1572 +74T 110
@ 59 T?-T+1 2/ X% @ 55 2T-3 1/X% @ 6{ 5-2T 1/v
273 +3T 2/% 5T-4 1/X% T-4 1/X%
ST7—2070+5575 — 1207 +21773 ~33872 +4507-510 —107%+12073 —48772 + 10547 — 1362 1474~ 1673 ~29372 +10987 — 1598
65 T?+3T-3 2/X 64 T?-3T+5 2/X 7 T3-T*+T—1 3/X
@ T3 —4T?>+4T -4 1/% @ 0 1/ @ 373 +5T3+6T 3/%
3782177 +49TC+ 1575 —433T* + 154373 ~343172 +5482T —6410 4783377 4121702037~ 1117*+ 149973 —421072 +7186T —8510 771 28710 47779 — 16878 +32277 —5607° +89175 — 13107 +
177773 ~223872 +2604T —2772

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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Dror Bar-Natan: Talks: Macquarie-191016:

Algebraic Knot Theory ]

wef:=http://drorbn.net/mac19/ El [=]

Strand Doubling and Reversal.

Abstract. This will be a very “light” talk: I will explain why
about 13 years ago, in order to have a say on some problems in
knot theory, I’ve set out to find tangle invariants with some nice
compositional properties. In other talks in Sydney (wef/talks) I
have explained / will explain how such invariants were found -

x w | b c N
w ‘ a S
7o o b | (ca—ala—vTd)/u Ty — DTev/p Ty = DTeO/p
Sle = c (T. — yv/u (@—0,T,—vT)/p (Te—1)0/pu
S ¢ ¢ =
ds"lr‘ﬁr;'
aw/o, ‘ a S Where o assigns to every a € S a Laurent mono-
a 1/ 0/« mial o, in {#,}pes subject to o’(a‘/lb,bxa) = (a —
N —¢/a (@B — ¢0)/a 1,b — tj'), o(T) U Ty) = o(T)) U o(T>), and

ofmi® = (o \{a, b)) U (c = Tuop)l;, 1, -

though they are yet to be explored and utilized.
(v-)Tangles.
(meta-associativity:

\/\\ \
mab mféb//m;fc = mﬁ’(r//mﬁfx)

1 {,’
( E “stite chi>n = (tangles are generated

by > and )
[Strand b -~ Strand a
doubling: ¢ . reversal:

a
Abc

Genus. Every knot is the boundary of an orie-
ntable “Seifert Surface” (wef3/SS), and the least
of their genera is the “genus” of the knot.

Claim. The knots of genus < 2 are precisely the p.
images of 4-component tangles via

YN T mﬁu

P e et S R P e =]

eta-Associativity L Fix By ) Runs,
' . zy X2z K3y H:

N - Tw. it B2y B Bt : R B Bsy Tl ]
o R L T -
¥ ds @3 B

. TR, SERRITIN S N PR  TES

S PR SRR R, -

i R R3 .. divide and conquer!

'Vo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for
ribbon knots using this technology (and more).
Implementation key idea:
(W, A = (aw)) ©

(W, A = 3 aaptahy)

|
wefl/AlexDemo

TEma1 Bog: BFag & Madea S Mszge ©F Magaas

N

€X

*\/ X ‘ =

a ribbon singularity  a clasp singularity

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be |’
presented as the boundary of a disk that has “ribbon singularities”,

but no “clasp singularities”. A “slice knot” is a knot in S3 = dB*
which is the boundary of a non-singular disk in B*. Every ribbon
knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

I[Fox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(¢) = f(£)f(1/1). (also for slice)

APy Bz Amay JA ooy F Rz S ot

1 Iy 1

l'E-ll. J.:F-n.i Eﬂ'{.-m ='I'|*1Fmr1{5-5'-l'ml1“|

Colm - o= S Py, ik, 2 146}

+
e
[ B S T

Fact. I is better viewed as an invariant of

Theorem. K is ribbon iff it is k7" for a tangle 7 for which 77 is
the untangle U.

MM Lobdd L Gompf, Schar-
Poipt i o=— i b == il .Elemannm
RN R RS B o S O AR mpson [GST)
UeT, le A,
7 . z . ._ \ T —[
T on —= A, Wltll;Rl._ ‘ ‘ ‘
N S K@)
ribbon K € 77 z(K) e RC A, l

Faster is better, leaner is meaner!

a certain class of 2D knotted objects in R*
[BND, BN].

Fact. I is the “O-loop” part of an inva-
riant that generalizes to “n-loops” (1D tangles
only, see further talks and future publications
with van der Veen).

Speculation. Stepping stones to categorifica-
tion?

M. Polyak & T. Ohtsuki
@ Heian Shrine, Kyoto

Ask me about geography vs. identity!

[BN] D. Bar-Natan, Balloons and Hoops and their Universal References.

The Gold Standard is set by the “I'-calculus” Alexan-
der formulas [BNS, BN]. An S-component tangle 7 has

{%%} with Rs = Z({T,: a € S)):

[(T) € Rs X Msxs(Rs) =

wla)z‘Sl S2

TiUuT, > S Ay 0

AP 0 A

(U-Pw| ¢ ] 569 \

- c 7+l"TB €+ 15
T, Ty > T, S ¢+1Q_‘/’ = %

[For long knots, w is Alexander, and that’s the fastest
lAlexander algorithm I know!  Dunfield: 1000-crossing fast.

Finite Type Invariant, BF Theory, and an Ultimate Alexander Invariant, o-
eB/KBH, arXiv:1308.1721.

[BND] D. Bar-Natan and Z. Dancso, Finite Type Invariants of W-Knotted Ob-
jects I: w-Knots and the Alexander Polynomial, Alg. and Geom. Top. 16-2
(2016) 1063—-1133, arXiv:1405.1956, weB/WKOI.

[BNS] D.Bar-Natan and S. Selmani, Meta-Monoids, Meta-Bicrossed Products,
and the Alexander Polynomial, J. of Knot Theory and its Ramifications 22-10
(2013), arXiv:1302.5689.

[GST] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered Knots and

Potential Counterexamples to the Property 2R and Slice-Ribbon Conjectures,

Geom. and Top. 14 (2010) 2305-2347, arXiv:1103.1601.

[Vo] H. Vo, Alexander Invariants of Tangles via Expansions, University of To-

ronto Ph.D. thesis, wef3/Vo.

“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org rir.rm= i

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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Dror Bar-Natan: Talks: UCLA-191101:

Everything around s/, is DoPeGDO. So what?

Thanks for inviting me to UCLA! [u]

[w] Continues Rozansky [Rol,
Ro2, Ro3] and Overbay [Ov],
joint with van der Veen [BV].

wef:=http://drorbn.net/l1al9/
More at wef3/talks

And what sI5, means:
simple Lie algebra s/;.

a solvable approximation of the semi-

Abstract. I’ll explain what “everything around” means: classical | Knot theorists should rejoice because all this leads to very po-
and quantum m, A, S, tr, R, C, and 6, as well as P, ®, J, D, | werful and well-behaved poly-time-computable knot invariants.
land more, and all of their compositions. What DoPeGDO means: |
the category of Docile Perturbed Gaussian Differential Operators. | ground for testing complicated equations and theories.

Quantum algebraists should rejoice because it’s a realistic play-

Conventions. 1.

Ga =1z = Giea ™

For a set A, let zy
2. Everything converges!

{zi}ica and let

[b,y] = —ey, la,b] = 0, [a,y] = -y, [b,x] = ex, and [x,y] =
ea + b. So t := ea — b is central and if !, sls /<ty = sbp.
U is either CU U(sIE )R] or QU Un(sls,)

—y, [b,x] = ex, and xy — gyx = (1 — AB)/h, where g =
A =ce" and B=e". SetalsoT = A™'B = ¢™.
[The Quantum Leap. Also decree that in QU,

A(y,b,a,x) = (y1 + B1y2, by + by, a1 + az, x1 + A1x2),

wep/oa A

Ay, b, a, x)[h] with [a, x] = x, [b,y] = —€y, [a,b] = 0, [a,y] =

& [ | | Less Abstract DoPeGDO := The category with objects finite
+\4’ ™ sets™? and mor(A — B):

& ) Z) {F = wexp(Q + P)} € Qllda zp €ll
m:U®U—-U A:U—-U®U S:U—-U Where: o w is a scalar.™ e Q is a “small” e-free
(9 (camme.) A 4D Metrized Lie Algebras quadratic in 4 U z3.™ e P is a “docile perturba-

e AR \/ /\ tion”: P = Y5, €P®, where deg P® < 2k+2.7
R e o cap Z?;‘éﬁtr’;: e Compositions:®
tr: U—U/wx=xw KRGQU@ QUJ > C*eQU g FIG = GF = (g |.4'*5zi7j)z,.:o: (T|Zf—>ﬁzig)g[:o'
(. f N\ ( carans o, Cool! (V*)®= ® V®5 explodes; the ranks of qua-
the dratics and bounded-degree polynomials grow
Hz?duzlélr?tf?r’ ) ) slowly!™”  Representation theory is over-rated!
~ DeCU® \Jec UeC UJ llt%egrzis:(i?;(iplh [I)C Cool! How often do you see a computational to-
olbox so successful?
Our Algebras. Let slS, = L(y,b,a,x) subject to [a,x] = x, Compositions (1). Inmor(4— B), 0= ZEué“,Zﬁ ZFlfcz[/+ ZGUZ Zj

i€A,jeB

A /J@ [

e Relations with prior art.
e The rest of the “compositions” story.

S(.b,a,x) = (~B'y,~b,~a,~A""x), Where o E < (1~ FaG1 ) IIEZ‘T
bnd R = X 15k bT @ alxk/ 1Tk, . oo F=hir B = GiFy) E,
o G =G+ E2G1(1 - F,G) ' E>.
Mid-Talk Debts. ¢ What is this good for in quantum algebra? |g°7, = , Lws det(I — F2Gy)™ L.
e In knot theory? ‘ . . " e P is computed using “connected Feyn-
e How does the “inclusion” D: Hom(U®™* — U®") ~ inan diagrams” or as the solution of a messy
DoPeGDO work? PDE (yet we’re still in algebra!).
® Proofs that everything around s/ really is DoPeGDO.

IDoPeGDO Footnotes. {1. Each variable has a “weight”e {0, 1,2}, and
always wtz; + wt; = 2.
2. Really, “weight-graded finite sets” A = Ag LU A LI A;.

Melvin,
Morton,

Theorem ([BG], conjectured [MM],
elucidated [Rol]). Let J,K) be
the coloured Jones polynomial of K,
representation of sl,. Writing
(q'2 = g7 Ja(K)
g2 — gdi2

Rl

= > a(Kdin",

Jj,m=0

g=et
“below diagonal” coeflicients vanish, a;,(K) =
0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:
Yo amm(KY™) - w(K)(eM) = 1.

“Above diagonal” we have Rozan%ky’% Theorem [Ro3, (1.2)]:

' -q [ Z(q—l)"pkao(qd))
(@ — e Hw(K)(g?) W (K)(g%)

Ja(K)(q) =

Garoufalidis|
in the d-dimensional

3. Really, a power series in the weight-0 variables .

4. The weight of Q must be 2, so it decomposes as Q = Oz + Qj1. The
coefficients of Q¢ are rational numbers while the coefficients of Qy;
may be weight-0 power series™.

. Setting wte = -2, the weight of P is < 2 (so the powers of the
weight-0 variables are not constrained™).

. There’s also an obvious product

mor(A; — Bj) X mor(A; — B;) = mor(A; LI A, — B; U By).

. That is, if the weight-0 variables are ignored. Otherwise more care
is needed yet the conclusion remains.

. Hom(U®* — U®) ~> mor({n;, Bi, 7., Eties. = {¥i bis 11,04, Xilies ),
where wt(n;, &, yi, x;) = 1 and wt(B;, 7..a;; bi, 11, a;) = (2,2,0;0,0,2).

. For tangle invariants the wt-O power series are always rational fu-
nctions in the exponentials of the wt-0 variables (for knots: just one
variable), with degrees bounded linearly by the crossing number.

=

Video and more: http://www.math.toronto.edu/~drorbn/Talks/CRM-1907,
http://www.math.toronto.edu/~drorbn/Talks/UCLA-191101.
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Dror Bar-Natan: Talks: Ohio-1901:

Computation without Representation

Thanks for inviting me to Ohio!
wef:=http://drorbn.net/o19/ [mjrgk

=]

[=

Follows Rozansky [Rol, Ro2, Ro3] and
Overbay [Ov], joint with van der Veen.
More at [BV] and at wef/talks.

IAbstract. A major part of “quantum topology” is the defini-
tion and computation of various knot invariants by carrying out
computations in quantum groups. Traditionally these computa-
tions are carried out “in a representation”, but this is very slow:
one has to use tensor powers of these representations, and the
dimensions of powers grow exponentially fast.

n my talk, I will describe a direct method for carrying out such
computations without having to choose a representation and ex-
plain why in many ways the results are better and faster. The two
key points we use are a technique for composing infinite-order
“perturbed Gaussian” differential operators, and the little-known
fact that every semi-simple Lie algebra can be approximated by
solvable Lie algebras, where computations are easier.

The (fake) moduli of Lie alge-
bras on V, a quadratic variety in
(V*)®2®V is on the right. We ca-
re about s/t = sI¢, /(€' = 0).
Solvable Approximation. In gl,, half is enough! Indeed g/, ®
a, = DN, b, 0):

b(N)=b: NN — N

i ] b.5 b))~ §: N - NN
Now define gl := Z)(ﬂ b, €0). Schematlcally, thisis [\, N] =

[N, N] = b, and [N, D] = N\ + eN. The same process works for
all semi-simple Lie algebras, and at €*! = 0 always yields a
solvable Lie algebra.

~>

KiW 43 Abstract (wef/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot

invariant we know. (experimental analysis @ wef/kiw)

CU and QU. Starting from sl,, get CU, = (y,a,x,t)/([t,—] =
0, [a,y] = =y, la,x] = x, [x,y] = 2ea — t). Quantize using

standard tools (I'm sorry) and get QU. = (y,a,x,t)/([t,—] =

Knotted Candies wsB/kc

f i[‘ordering monomials” to some fixed y, x,

, la,y] = =y, [a,x] = x, xy — ehfyx = (1 — Te 2 /).

BW Bases. The U’s we care about always have “Poincaré-
irkhoff-Witt” bases; there is some finite set B = {y,x,...} of
“generators” and isomorphisms Oy, : S(B) — U defined by
.. order. The quantum
roup portfolio now becomes a “symmetric algebra” portfolio, or
a “power series” portfolio.

Operations are Objects. F € Homg(S(B) = S (B)

The Dogma. Use representation theory. In
\ C principle finite, but slow.

:q,‘rF m = x B* :={z; =i zi € B}, I
1 m  en\ __ |
(%L %’% e = Omnt S(BY @S (B))
C_ 3 The Yang-Baxter Technique. Given an al— <1_[ A l_[ g > = 1_[ ;i I
bi, Ji gebra U (typically U(g) or U,(a)) and ele- fin general, for f € S(z;) and g € S(£)), S(B)®S(B')
ments (f.8) = f@r)g],_, = 8@.)f] !
\ _ ol=0 @ =0 S(B*UB
b 4 R= Zai ®bieU®U and CeU, e Composltlon Law. If ( I )
_ 2 ~
\ form Z = Z Caibjakc biajbkc. S(B) S(Bl) 8 S(BH) f IS Q[é‘i’ Z:]
i,j.k feQlgizl geQllZy.z 1
b/{ 9k Problem. Extract information from Z.

then (%)=(§?J/”)=(§|g;_>az} f) » (flz 0, )

A Knot Theory Portfolio. L]“anglmds and Operations

C#!
Has operations LI, mk, Al | stitching ~\ cuap
1]
| mk
doubling
Al

S

Jjk’
All tangloids are generated by

AN

y

A\

R*! and C*! (so “easy” to pro-
i ~ +1
crossing Ry cuap C;

°
strand

o

Makes some knot properties
(“genus”, “ribbon”) become
“definable”.

reversal S;

1. The 1-variable identity map I: S(z) — S(z) is Examples
given by I} = @ and the n-variable one by [, = @351+ +aén:
2. The arche&bél mﬁrlrﬁphcatlorﬁ 777777 S(Z,, zj) — Sz)”

has m — ezk(é’l"’{j).

duce invariants).
A “Quantum Group” Portfolio consists of a vector space U

along with maps m

(and some axioms...)

3. The “archetypal coproduct A;k: S(zi) — S(zj,z)”, given by

Zi—>zj+zorAz=z®1 +1®z has A = @@t

U—-® AL i
Q= 0 el LA [k L= e 4. R-matrices tend to have terms of the form eZ’ e U, @ U,.
T The “baby R-matrix” is R = &* € S(y, x).
b X i OX Ve X oee 13 . : . 2"
]QO [@)""" A T Sk ](@0 5. The “Weyl form of the canonical commutation relations” sta-
i : ) - .
A A SN R A tes that if [y,x] = #I then e®*e® = ePef e’ So with
NO) S(B) S(Bj. B)~——3(0) b, ] N
Jk Our Way. For certain algebras, — _
m! work in a homomorphic poly- CS(y X) "Ll(y x) we have SW = pWHéxnét
U—-- Si dimensional “space of formulas”. @w

Video and more at http://www.math.toronto.edu/~drorbn/Talks/0Ohio-1901
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Do Not Turn Over

Until Instructed [=]:¢ [=]

Dror Bar-Natan: Talks: MAASeaway-1810:
My Favourite First-Year Analysis Theorem

Thanks for inviting me to the fall 2018 MAA Seaway Section meeting!

[=]

Handout, video, links at wef:=http://drorbn.net/maal8/

\Abstract. Whatever it may be, it should say something useful
and exciting and it should not be *about* rigour, yet it should
*demand* rigour. You can’t guess. You probably think it the
dreariest. You are wrong.

14 The Fundamental Theorem of Calculus.

If f is integrable on [a, b] and f = g’ for some function g, then

Several excerpts here are from

Contents ®

Spivak’s “Calculus” ®. I believe
Prologue they fall under “fair use”.
1 Basic Properties of Numbers 3
2 Numbers of Various Sorts 21 CALGTLILT f'|i.11
Foundations P T R T T R b Y S
3 Functions 39 e | B AR TR
4  Graphs 56 ’
5 Limits 90 5
6 Continuous Functions 113 e
7 Three Hard Theorems 120
8 Least Upper Bounds 142
Derivatives and Integrals
9 Derivatives 147
10 Differentiation 166
11 Significance of the Derivative 185
12 Inverse Functions 227
13 Integrals 250
14 The Fundamental Theorem of Calculus 282
15 The Trigonometric Functions 300
%16 o is Irrational 321 _—ﬁ
«17 Planetary Motion 327
18 The Logarithm and Exponential Functions 336
19 Integration in Elementary Terms 359
Infinite Sequences and Infinite Series
20 Approximation by Polynomial Functions 405

b
f =g —g@.
® J
Tweets  Tweets & replies *16 mis Irrational.
Oror Bar-Matan droberizan - 2ope 2000
Al el et Dt adnl ol = e = [0 a s fasea | Repeae:
regRab oo parts & =T k) <0 Vo E Eaon s ekl

= H o
[} i
1 " "

20 Approximation by Polynomial Functions.

Suppose that f is a function for which : For example for f(x) = sin(x)

for every ¢ > 0 there is § > 0 such that, for all x,
if 0 <|x—al <3$,then |f(x)— f(a)| <e.

If f and g are continuous at a, then

®

(1) f + g is continuous at a,
(2) f-gis continuous at a.

6 Continuous Functions]

f@,.... f®@ rata =0, f® =sin, cos, — sin,
. I .
pll exist. Let - | —COs, sin, ..., SO
a = @ O<k<n I (=1)*k-D/2
ko i I — k odd
and define : ag = ’
P.a(x) = ao +a1(x — @) + - + an(x — a)". 0 k even
Then I
. fx) = Pralx) !
lim ————>2""~ = (. |
x—a (x —a)" @ i
7
iil= ak =={ A e
[} EvenQ[r]
Plot [Evaluate@Append [
Table[Labeled [Za‘ X<, n] > {n, {1, 3,5, 7)}]:
k=@
Labeled[Sin[x], Sin]
], (x, -27, 27}, PlotRange - {-1.5, 1.5)]
5
.
t[2)= Sin

[f f is continuous on [a, b] and f(a) < 0 < f(b), then there 1s some x in [a, b]
such that f(x) =0. ®

2

7 Three Hard Theorems.

H o= ColumneTable[k - N[a 157*], {k, {@, 3,9, 13, 29, 35, 157, 223, 457} } ]

Q0.

3 -644982.

9 »1.59711x 18
13 - 5.65477 x 10'®

Some sizes (in multiples of the diameter of
a Hydrogen atom:

1<€Q | 1743 Vs

f increasing | f decreasing ‘|‘ f increasing
| — P
I

[?o X<~z

/

11 Significance of the Derivative. ouga 29 > 5.42689 x 102 A red blood cell 1.56 % 1?2
N 35 . 6.95433 x 10% The CN Tower 1.11 x 10

q=X"-x 157 > 4.86366 x 1055 The rings of Saturn 5.6 x 10"
/ I‘L 223 -5 -1.94045 x 195! The Mllky Way galaxy 1.89 x 1031
Y'=3 =l ! 457 - 4.87404x 10 16 The observable universe | 1.76 x 10%7

= (ﬁx*’l)(ﬁx—l) - % J; 457 457 ‘”1'

- ; 0 ' )= {N[Zak 157“] s Y IN[a 157*]} e
>0 X>\7/3° | | ke kee
- ‘i; e i ! bu | -0.0795485, 5.10624 x 10°°)
R CXC I '

)= N@Sin[157]

ouis= ~@.8795485

Do Not Turn Over Until Instructed

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MAASeaway-1810/
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e What’s “solvable approximation”? What’s “continuously”?
e What are “docile perturbed Gaussians™?

Faster is better, leaner is meaner!

Dror Bar-Natan: Talks: Matemale-1804: See also [BV] With Roland van der Veen E E Al %D .,_.' ' SEP

Solvable Approximations of the Quantum s/, Portfolio | weB:=http://drorbn.net/mm18/ [a]\ =S g{g%
(Our Main Theorem (loosely stated). Everything that matters in| - M ‘ . i Gompt. Schar-
the quantum s/, portfolio can be continuously expressed in terms | 1| ' i T i K L mpson [GST]
of docile perturbed Gaussians using solvable approximations. O UeT, 1 €A, '
Our Main Points. . I LR KJ—\ | ﬂ

s 3 e wit = b L
e What’s the “quantum s/, portfolio”? Ton S —= A, L K1) N
e What in it “matters” and why? (the most important question) ribbon K € 77 2(K) € R C A, { |
! [

e Why do they matter?
e How proven? (docile)

(2" most important)
e How implemented? (sacred; the work of unsung heroes)
e Some context and background.

e What’s next?

The quantum s/, Portfolio ®uml NS0 ®umil NS 10
includes a classical universal m
enveloping algebra CU, its

AD,SD
quantization QU, their tensor K. S € {QU®S} —— {CU®%}

powers CU® and QU®5 with the “tensor operations” ®, their
products m;(j , coproducts Al‘k and antipodes S;, their Cartan auto-

IPBW basis, and change of basis maps are included.

&

§i | formulas [BNS, BN1].
w
I(T) € Rg X Mgxs(Rs) = {

b
B
5

» The Gold Standard is set by the “I'-calculus” Alexander
An S-component tangle 7" has

s } with Rs == Z({t.: a € S}):

S A

wlwz\Sl S2
T\uT, — S ‘Al 0

mab ( (1

c

e
ty, tp — 1,

(Roland: “add to A the product of column b and row a, divide by (1 — Au),
mophisms C6: CU — CU and 0 : U — U, the “dequanti— elete col r )
P

zators” AD: QU — CU and SD: QU — CU, and most impor- [FOr long knots, w is Alexander, and that’s the fastest
tantly, the R-matrix R and the Drinfel’d element s. All this in any {Alexander algorithm I know!

Dunfield: 1000-crossing fast.

So 0 A
—,B)w‘ c S
ad 06
c y+§f E+I«Z5J
S ¢+q L+q

(v-)T: les.
T [y B = o
b -

(meta-associativity:
— | mab
" L b
g 3 “stitching”

me e = mle sy
(tangles are generated
by > and X)

wla S w | b c S

a o o b | (0a—aTa—vTo/u  (Tp—DTovju Ty — DT0/u

sle 2 Fra | < Te=Vyvju  (@=0Tq~vTd/p  (Te=D/u

= T Tyte S p % =

dS“JvT‘,—>TU"

aw/o, ‘ a S Where o assigns to every a € S a Laurent mono-
a 1/a 0/a ] mial o, in {f}pes subject to o—(a‘/Zb,bZ\'a) = (a —
N —pla (@E-¢O)/a ) 1,b — 1), o(T) U Ty) = o(Ty) U o(T2), and

ofm® = (o \ {a. b)) U (¢ = 0a0 )l 1y

doubling: ¢ _ reversal:

lStrand a Az b Strand a Sa « |Vo’s Thesis [Vol. A proof of the Fox-Milnor theorem for =
= ribbon knots using this technology (and more).

Genus. Every knot is the boundary of an orie- s :
ntable “Seifert Surface” (wef/SS), and the least y 'ﬁ
of their genera is the “genus” of the knot. 2o i
Claim. The knots of genus < 2 are precisely the g
images of 4-component tangles via ] *

L S R B

(w, A =

Z a’abtahb)

i
B@lmplementation key idea: o 813 { 51?751?65@9
(W, A = (aw)) & ‘r "_'f'rl_ R PO,

[T PP S P L PO R R R | |

L ..-‘.'==|il--.I!

o - (GEREERL

l \/ X . example [BN2]

la ribbon singularity  a clasp singularity

presented as the boundary of a disk that has “ribbon singularities”,
but no “clasp singularities”. A “slice knot” is a knot in S = 9B*
which is the boundary of a non-singular disk in B*. Every ribbon
knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon. ]
IFox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(¢) = f(t)f(1/1). (also for slice)

- “God created the knots, all else in ?i“' “"_"’
topology is the work of mortals.” ‘;}5_“ =i

Leopold Kronecker (modified) www.katlas.org :.- Wr 1My

Ll (LR S U ST TR | M I

. . o vy - (et Hil 3
A Bit about Ribbon Knots. A “ribbon knot™ is a knot that can be [~ e # ¢ Tades &4 Myzaz £ M3gaa.

Apyy Bz Bmay JA ooy F Rz S maat

L3 ]

TR N R = | .-||

Meta-Associativity POl Ty Wiy ) Runs,
&= I."[n:“. 1B, Ta, Enl Bl

R3

g ey B |

W31 <faz WKz ®Ho
TR O ¢

... divide and conquer!

Iy g

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Matemale-1804/
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Dror Bar-Natan: Talks: LesDiablerets-1708: Follows Rozansky [Rol, Ro2, Ro3] and Overbay [Ov],

Happy Birthday Anton! EEHE' [=

: joint with van der Veen. Preliminary writeup [BV1],
The Dogma is Wrong fuller writeup [BV2]. More at we/talks, wep:=http://drorbn.net/1d17/
|Abstract. It has long been known that there are knot invariants Theorem [BNG] conjectured [MM], e- Melvin,
g J Morton

associated to semi-simple Lie algebras, and there has long been [lucidated [Rol]). Let J4(K) be the co- ; Garoufalidis
a dogma as for how to extract them: “quantize and use repre- loured Jones polynomial of K, in the d-dimensional representa-
sentation theory”. We present an alternative and better procedu- tion of sl,. Writing

re: “centrally extend, approximate by solvable, and learn how to q'"? = g V) J4(K)
re-order exponentials in a universal enveloping algebra”. While g2 — gar
equivalent to the old invariants via a complicated process, our i-
mvariants are in practice stronger, faster to compute (poly-time vs.
exp-time), and clearly carry topological information.

KiW 43 Abstract (wefi/kiw). Whether or not you like the formu-
las on this page, they describe the strongest truly computable knot
invariant we know.

= Z am(K)d’R",
g=e"  jm>0
“below diagonal” coefficients vanish, a;,(K) =
0 if j > m, and “on diagonal” coefficients
give the inverse of the Alexander polynomial:
(S0 @mm(KOR™) - w(K)(e") = 1.
“Above diagonal” we have Rozansky’s Theorem [Ro3, (1.2)]:

d _ _ 1) d
Experimental Analysis (wef3/Exp). Log-log plots of computation | J,(K)(g) = q - v ( Z (4 ;]z P k(Kj (") .
time (sec) vs. crossing number, for all knots with up to 12 cros- (G-q )“’(K)(q ) w(K)(g)
sings (mean times) and for all torus knots with up to 48 crossings: c _C_ The Yang-Baxter Technique. Given an alge-
o L e, \b,-‘ a;i ” bra U (typically U(g) or U, ,(9)) and elements
o - \ R=> a®hecUsU and Cel,

100

by aj form

) -7 '“:3‘. J Z = Z Ca[bjakczbiajbkC.
, 10 L \ ik

. . P —— - - = Problem. Extract information from Z.
IPower. On the 250 knots with at most 10 crossings, the pair \ The Dogma. Use representation theory. In
(w, p1) attains 250 distinct values, while (Khovanov, HOMFLY- c C  principle finite, but slow.
IPT) attains only 249 distinct values. To 11 crossings the numbers [The Loyal Opposition. For certain algebras, work in a homomor-
are (802, 788, 772) and to 12 they are (2978, 2883, 2786). phic poly-dimensional s
Genus. Up to 12 xings, always p; is symmetric under ¢ < ¢!, [‘space of formulas”. m <> (Fs) ———={U) @m
With p} denoting the positive-degree part of p;, always deg p| < [The (fake) moduli of Lie alge-
2g — 1, where g is the 3-genus of K (equality for 2530 knots). bras on V, a quadratic variety in
This gives a lower bound on g in terms of p; (conjectural, but (V*)®2®V is on the right. We ca-
undoubtedly true). This bound is often weaker than the Alexander re about slk = sl / (1 = 0).
bound, yet for 10 of the 12-xing Alexander failurES_ blé do%s gitve Recompoglng gl,. Half is enough! gl, ® a, = D(N, b, 6):

: ibbon Knots -
the right answer. o i B = b: o< - <

X . example [BN] ~ ?ﬁ EBLL;T ~ pass b))~ 6: N - NN

1 b,6 1
a ribbon smgularlty a clasp singularity

Now define gl := D(N, b, €6). Schematically, thisis [N, N] = N
[N,N] = el and [N,\] =\ + e\. In detail, it is

\ \ \ f\ l Gompf, Schar- i J
L Sl L AT lemann, Tho- Xii X 26')(‘ _6.x . .. :6—6. . _66' |
i i i i S i i Eﬂn fomann,_Th [xij» Xl =6 juxis — Oixij  [yij» Yl = €6 iyl 1iYk;j

. il SNl x| DX Ykl =0 u(€6 jarxin + 6i(bi + €ai)[2 + Si>ryin)
UeTn € Ay —0i(€0k<jxyj + Ok j(bj + €a;)[2 + Ois jyij)

T T 7 .. . N N
T s Ao, ~ ‘ m ] T N s xje] = (61 = 6 [Di, xji] = €(6i — Sir) X ju
PN PN ( [ai, y ] =(0i; — i)y jk [bi,yjul=€(6ij — Sy jx

ribbon K € 77 z(K) e RC A, [The Main sl, Theorem. Let g¢ = {t,y,a,x)/([t,-] = 0, [a,x] =
[Vol: Works E with R := K(T‘l(l)) x, [a,y] = —y, [x,y] = 1—2€a) and let g; = g/(e*! = 0). The g¢-
ffor Alexander! AT =8 420 — 10 - 21" + 5t3 -2 =7t + 13 finvariant of any S -component tangle K can be written in the form

+ 15 _ 14 13 _ 12 11 10 _ 9 _ 48 7 _ 6 . .
ol = 5t‘ 181" + 33t . 326 + 2t + 42t 642t 8t 3+ 1661 , 2421+ 7(K) = O (w(BL+Q+P: ® " yiaixi) , where w is a scalar (a ratio-

Faster is better, leaner is meaner! 1087 + 132¢* — 226¢° + 148> — 11— 36 . . s . .

nal function in the variables #; and their exponentials 7; =

where L = ) [;;tia; is a quadratic in #; and a; with integer coef-
s X 0 3 ficients /;;, where Q = 3’ g;;y;x; is a quadratic in the variables y;
0 (a1y102€y3x3 | x3a; ® y1y3a2) =xa ®@ye'a€ U ®U) @and x; with scalar coefficients ¢;;, and where P is a polynomial in
(€, vi, a;, x;} (with scalar coefficients) whose €?-term is of degree
at most 2d + 2 in {y;, +/a;, x;}. Furthermore, after setting #; = r and
T; = T for all i, the invariant Z(K) is poly-time computable.

Ordering Symbols. O (poly | specs) plants the variables of poly in
S(@;g) on several tensor copies of U(g) according to specs. E.g.,

This enables the description of elements of T/(q)®® using com-
mutative polynomials / power series.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1708/

37


http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1708/

Dror Bar-Natan: Talks: McGill-1702: Joint with Roland van der

What else can you do with solvable approximation

Veen

s?

wef:=http://drorbn.net/McGill-1702/
Thanks for the invitation! [m]J3

|

|Abstract. Recently, Roland van der Veen and myself found that
there are sequences of solvable Lie algebras “converging” to any
given semi-simple Lie algebra (such as sl, or sl3 or ES). Certain
computations are much easier in solvable Lie algebras; in particu-
lar, using solvable approximations we can compute in polynomial
time certain projections (originally discussed by Rozansky) of the
knot invariants arising from the Chern-Simons-Witten topologi-
cal quantum field theory. This provides us with the first strong
knot invariants that are computable for truly large knots.

But s/, and s/3 and similar algebras occur in physics (and in
mathematics) in many other places, beyond the Chern-Simons-
Witten theory. Do solvable approximations have further applica-
tions?

Chern-Simons-Witten. Given a knot y(¢) in
[R? and a metrized Lie algebra g, set Z(y) :=

Recomposing gl,,. Half is enough! g, ® a, = D(N, b, 9):

[ b() =b: V@Y - N
b(N) ~ 6: N - NN

Cxa

i
b,6
Now define glf, := D(N, b, €6). Schematically, thisis [N, N] = N,
[N, D] = e, and [N,N] = N\ + €\. In detail, it is

~> ~>

: / leij, ex] =0 jrei — duiex;  Lfij» frul = €0 jufiu — €61 fij
i| N ey | L€ Jul =6 (€6 jaken + Su(hi + €81)/2 + 6i>1 fin)
) —0ji(€dk<jexj + Ok j(h; + €87)/2 + O jifi))
I N[ g enl =@~ dwe el =e(6i; — e

Lgi> fir]=(6ij — i) fix [hi, fix]=€(6ij — 6i) fix

f DA (Bik CS(A)PExpy(A), Ril
AQ!(R3,9)
where cs(A) = & [, tr(AdA + 24%) and 'St \
1
PExp,(A) = [_[ exp(y*A) € U = U(g), R*!
0 Cil Cil
and U(g) = (words in g)/(xy — yx = [x,y]). \/
n a favourable gauge, one may hope that this ¢
computation will localize near the crossings C . c
and the bends, and all will depend on just two bi i
quantities, /\
R:Zait@bieﬂ@ﬂ and CeU. b aj
This was never done formally, yet R and C
can be “guessed” and all “quantum knot inva- I \
riants” arise in this way. So for the trefoil, Ko
7= CabjarChiabC. <
Z JCk J%k c \ c

i,j.k

But Z lives in U, a complicated space. How do you extract infor-
mation out of it?

Solution 1, Representation Theory. Choose a finite dimensional
representation p of g in some vector space V. By luck and the

Solvable Approximation. At € = 1 and modulo & = g, the above
is just gl,. By rescaling at € # 0, gl is independent of €. We
let glX be gl¢ regarded as an algebra over Q[e]/€*! = 0. It is the
“k-smidgen solvable approximation” of gl,,!

Recall that g is “solvable” if iterated commutators in it ultimately
vanish: g, = [g, a], 93 == [92,82], ..., 94 = 0. Equivalently, if it
is a subalgebra of some large-size N algebra.

INote. This whole process makes sense for arbitrary semi-simple
LLie algebras.

wisdom of Drinfel’d and Jimbo, p(R) € V@ V*® V® V and
p(C) € V* ® V are computable, so Z is computable too. But in

exponential time! j

mon- L

Solution 2, Solvable Approximation. Work directly in T/(g;), w-

Gompf, Schar-
lemann, Tho-
mpson

Why are “solvable algebras” any good? Contrary to common
beliefs, computations in semi-simple Lie algebras are just awful:

here g slg (or a similar algebra); everything is expressible
using low-degree polynomials in a small number of variables, h-
ence everything is poly-time computable!

Hi‘rilFl'l[l * 5| S8 Fullbimplify ;¢ AstrixFemn Enter
o B [

'Yet in solvable algebras, exponentiation is fine and even BCH,
z = log(e*e”), is bearable:

. 1 1 el !
H.rlrilF:.p[l ; h |] £ & MatrizFom | a* a-r
: i 4] s
' .y .
Hd‘lrilF:.pl.lI:; l::::.l-."lull-ilFx[l I.T: E:: iy
Matrivlag ;¢ PewerExpand ;¢ Sinplify /0
MatrawFnarm

Example 0. Take gp = slg = Q(h,e,l, f), with h central and
[f.1] = f.le, 1] = —e, [e, f] = h. In it, using normal orderings,

h—1
® ef)|€®lf)’ and,
@(eﬁe.f |fe) =0 (V®V6ef.| €f) withv = (1 + h6)_1‘

R= @(exp (hl +

[Example 1. Take R = Qlel/(e? = 0) and g; = slé = R{h,e,l, f),
with A central and [f,I] = f, [e,l] = —e, [e, f] = h — 2€l. In it,

2 =2 =

Question. What else can you do with solvable approximation?
Chern-Simons-Witten theory is often “solved” using ideas from
conformal field theory and using quantization of various moduli
spaces. Does it make sense to use solvable approximation there
too? Elsewhere in physics? Elsewhere in mathematics?

See Also. Talks at George Washington University [wep/gwu],
[ndiana [wef/ind], and Les Diablerets [wef/1d], and a University
of Toronto “Algebraic Knot Theory” class [wef/akt].

0(e™ | fe) = O (v(1 + evoA/2)e™ | elf), where A is

135262 2+ 3V he? f2 + 8V2e f + 4262 he f +4vSelf —2vSh +4l.
IFact. Setting h; = h (for all i) and ¢ = e”, the g, invariant of any
tangle 7 can be written in the form

Z,(T)=0 (w-le”LW‘Q(l +ew™P) | X eil; f)

where L is linear, Q quadratic, and P quartic in the {e;, ;, f;} with
w and all coefficients polynomials in z. Furthermore, everything
is poly-time computable.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/McGill-1702/
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