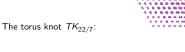


The Rolfsen Table:


The torus knots $TK_{13/2}$, $TK_{17/3}$, $TK_{13/5}$, and $TK_{7/6}$:

Meaningful.

 θ gives a genus bound (unproven yet with confidence). We hope (with reason) it says something about ribbon knots.

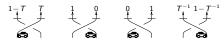
ωεβ:=http://drorbn.net/ktc25

ωεβ:=http://drorbn.net/ktc25

Convention.

T, T_1 , and T_2 are indeterminates and $T_3 := T_1 T_2$.

ωεβ:=http://drorbn.net/ktc25


Preparation. Draw an *n*-crossing knot *K* as a diagram *D* as on the right: all crossings face up, and the edges are marked with a running index $k \in \{1, ..., 2n + 1\}$ and with rotation numbers φ_k .

 $\omega\epsilon\beta$:=http://drorbn.net/ktc25

image credits: Dall-E

Model *T* **Traffic Rules.** Cars always drive forward. When a car crosses over a sign-*s* bridge it goes through with (algebraic) probability $T^s \sim 1$, but falls off with probability $1 - T^s \sim 0$. At the very end, cars fall off and disappear. On various edges traffic counters are placed. See also [Jo, LTW].

Video and more at http://www.math.toronto.edu/~drorbn/Talks/KnotTheoryCongress-2502.