Theorem. With ¢ = (s,1,j), co = (S0, 10, jo), QZI
and c¢; = (s1, i1, j1) denoting crossings, there is

a quadratic Ry1(c) € Q(T))[gvep : @.B € {i, j}], [; j
a cubic Riz(co,c1) € Q(T))[8vep : @B € {lo,Jo,ll,Jl}] and a
linear I'; (¢, k) such that the following is a knot invariant:

0D) = Aifads (Z Riy(0) + ZRu(co,cl) + Zrl(wk,lo)

normdhzatlon ¢ €o-C1

see later .

= Ji
This picture gave the invariant its name

If these pictures remind you of Feynman diagrams, it’s because
they are Feynman diagrams [BN2].

Questions, Conjectures, Expectations, Dreams.

Question 1. What’s the relationship between ® and the
Garoufalidis-Kashaev invariants [GK, GL]?

Conjecture 2. On classical (non-virtual) knots, 6 always has he-
xagonal (Dg) symmetry.

Conjecture 3. @ is the €' contribution to the “solvable appro-
ximation” of the s/3 universal invariant, obtained by running the
quantization machinery on the double D(b, b, €6), where b is the
Borel subalgebra of sl3, b is the bracket of b, and  the cobracket.
See [BV2, BN1, Sch]

Conjecture 4. 0 is equal to the “two-loop contribution to the Kon-
tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,
and in great detail by Ohtsuki [GR, Rol, Ro2, Ro3, Kr, Oh].
[Fact 5. 6 has a perturbed Gaussian integral formula, with inte-
gration carried out over over a space 6 F, consisting of 6 copies of

Lemma 1. The traffic function gaﬁ is a “relative invariant”:

he space of edges of a knot diagram D. See [BN2].

Conjecture 6. For any knot K, its genus g(K) is bounded by the
T -degree of 0: 2g(K) > degy, 6(K).

Conjecture 7. 6(K) has another perturbed Gaussian integral for-
mula, with integration carried out over over the space 6H;, con-
sisting of 6 copies of H{(X), where X is a Seifert surface for K.
I[Expectation 8. There are many further invariants like 6, given by
Green function formulas and/or Gaussian integration formulas.
One or two of them may be stronger than 6 and as computable.
Dream 9. These invariants can be explained by something less
foreign than semisimple Lie algebras.

Dream 10. 6 will have something to say about ribbon knots.

[BN1] D. Bar-Natan, Everything around sl3, is DoPeGDO. So References.
what?, talk in Da Nang, May 2019. Handout and video at weB/DPG.

Lemma 2. With k* := k + 1, the “g-rules” hold j”yi+
near a crossing ¢ = (s, i, ]?: ‘ ; N j
gis=8ip+0p gp=T'grp+(1=T")gjp+0bipg gonp=0mp
Sait = ngai + Oqi+ 8ajt = &aj T a- Ts)gm‘ + 6&]*‘ 8a,1 = 611,1
Corollary 1. G is easily computable, for AG = I (= GA), with A
the (2n+1)x(2n+1) identity matrix with additional contributions:

A ‘ col it col j*
c=(s,i,j)r—» rowi | -T° T°-1
IFor the trefoil example, we have: row.J 0 -1
1 -T 0 0O T-1 0 0
0 1 -1 0 0 0 0
0 O 1 -T 0 0 T-1
A=]10 0 1 -1 0 0 s
0O 0 T-1 O 1 -T 0
0 O 0 0 0 1 -1
0 O 0 0 0 0 1
1 T 1 T 1 T 1
1 T T T2
0 1 T2-T+1 T2-T+1 T2-T+1  T?-T+1 1
0 O 1 T T T 1
T2—§_+1 T2—1T+1 T2—1T+1 T2—7T+1
G=|0 0 == 1
T2-T+1 JI" T2-T+1  T2-T+1
0 0 1-T (T 1) 1 T 1
T2-T+1  T?2-T+1 T2-T+1 T2-T+1
0 O 0 0 0 1 1
0 O 0 0 0 0 1
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Note. The Alexander polynomial A is given by
A = T2 det(A), withgp = Y, o, w= s
We also set A, := A(T,) forv=1,2,3.
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Video and more at http://www.math.

toronto.edu/~drorbn/Talks/Toronto-241030.
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