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In this example, if you ignore the dotted green line (marked “6”), you
see the planar connection diagram DB, which has three inputs (1,2,3)
and a single output, the cycle 0. If you only look inside the green line,
you see DI , with inputs 2 and 3 and an output cycle 6. If you ignore the
inside of 6 you see DO, with inputs 1 and 6 and output cycle 0.
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Let FB (Big Faces) denote
the vector space whose ba-
sis are the faces of DB, let
FI (Inner Faces) be the spa-
ce of faces of DI , and let FO

(Outer Faces) be the space
of faces of DO. Let G1, G2, G3, G6, and G0 be the spaces of gaps (ed-
ges) along the cycles 1,2,3,6, and 0, respectively. Let ψ B ψDB and
ϕ B ϕDB be the maps defining S(DB) and let γ B ψDO and δ B ϕDO

be the maps defining S(DO). Further, let α B ψDI : FI → G2 ⊕G3 and
β B ϕDI : FI → G6 be the maps defining S(DI), and let α+ B I ⊕ α and
β+ B I⊕β be the extensions of α and β by an identity on an extra factor
of G1, so that β+∗α

∗
+ = IG1 ⊕S(DI). Let µ map any big face to the sum of

G1 gaps around it, plus the sum of the inner faces it contains. Let ν map
any big face to the sum of the outer faces it contains. It is easy to see
that the master diagram (MD) shown on the right, made of all of these
spaces and maps, is commutative.
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Claim. The bottom right square of (MD) is an
equalizer square, namely FB ≃ EQ(β+, γ). He-
nce ν∗µ∗ = γ∗β+∗ .
Proof. A big face (an element of FB) is a sum of outer faces fo and a
sum of inner faces fi, and it has a boundary g1 on input cycle 1, su-
ch that the boundary of the outer pieces fo is equal to the boundary
of the inner pieces fi plus g1. That matches perfectly with the defini-
tion of the equalizer: EQ(β+, γ) = {(g1, fi, fo) : β+(g1, fi) = γ( fo)} =
{(g1, fi, fo) : γ( fo) = (g1, β( fi))}. □
Proof of Theorem 4. With notation as above, with the example abo-
ve (which is general enough), and with the claim above, and also u-
sing functoriality, we have S(DB) = ϕ∗ψ∗ = δ∗ν∗µ∗α∗+ = δ∗γ∗β+∗α

∗
+ =

S(DO) ◦ (IG1 ⊕ S(DI)), as required. □
Proof of Theorem 5. We need to verify the Reidemeister moves and
that was done in the computational section, and the statement about the
restriction to links, which is easy: simply assemble an n-crossing knot
using an n-input planar connection diagram, and the formulas clearly
match. □

Further Homework.
Exercise 6. By taking U = 0 in the reciprocity statement, prove that
always σ(ϕ∗S ) = σ(S ). But that seems wrong, if ϕ = 0. What saves the
day?
Exercise 7. By taking S = 0 in the reciprocity statement, frove that
always σ(ϕ∗U) = σ(U). But wait, this is nonsense! What went wrong?
Exercise 8. Given ϕ : V → W and a subspace D ⊂ V , show that there
is a unique subspace ϕ∗D ⊂ W such that for every quadratic Q on W,
σ(ϕ∗Q|D) = σ(Q|ϕ∗D).
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Exercise 9. When are diagrams as on the ri-
ght equalizer diagrams? What then do we learn
from Theorem 3?

Exercise 10. There are 11 types or irreducible commutative squares:
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. Show that pushing commutes with pul-

ling for all but four of them. Compare with the statement of Theorem 3.
Exercise 11. Prove that a square is admissible iff it is an equalizer squa-
re, with an additional direct summand A added to the Y term, and with
the maps µ and ν extended by 0 on A.
Exercise 12. Prove that the direct sum of two admissible squares is a-
dmissible. Warning: Harder than it seems! Not all quadratics on V1⊕V2
are direct sums of quadratics on V1 and on V2.
Exercise 13. Given a quadratic Q on a space V , let π be the projection
V → V/ rad(Q) and show that π∗Q = Q/ rad(Q), with the obvious defi-
nition for the latter.
Exercise 14. Show that for any partial quadratic Q on a space W the-
re exists a space A and a fully-defined quadratic F on W ⊕ A such
that π∗F = Q, where π : W ⊕ A → W is the projection (these are
not unique). Furthermore, if ϕ : V → W, then ϕ∗Q = π∗ϕ∗+F, whe-
re ϕ+ = ϕ ⊕ I : V ⊕ A → W ⊕ A and π also denotes the projection
V ⊕ A→ V .
Solutions / Hints.

Hintfor1.Onavectorinthedomainofonebutnottheother,takean
outrageousvalueforU,thatwillraiseorlowerthesignature.
Hintfor2.WLOG,Q1isdiagonalandQ1=0.
Hintfor5.It’senoughtotestthatagainstUwithD(U)=imϕ.
Hintfor6.The“shift”partof0∗Sisσ(S).
Hintfor7.ϕ∗Sisn’t0,it’sthepartialquadratic“0onimϕ”(and
indeed,σ(ϕ∗U)=σ(U)ifϕissurjective).

Hintfor10.Theexceptionsare01
00,00

10,01
11,and11

10.
Hintfor12.UseExercise11.

Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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