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In this example, if you ignore the dotted green line (marked “6”), you
see the planar connection diagram Dpg, which has three inputs (1,2,3)
and a single output, the cycle 0. If you only look inside the green line,
you see Dj, with inputs 2 and 3 and an output cycle 6. If you ignore the
inside of 6 you see Dy, with inputs 1 and 6 and output cycle 0.

Let Fp (Big Faces) denote (MD)
the vector space whose ba-
sis are the faces of Dg, let
F; (Inner Faces) be the spa-
ce of faces of Dy, and let Fp
(Outer Faces) be the space
of faces of Dy. Let G, G2, G3, Gg, and Gy be the spaces of gaps (ed-
ges) along the cycles 1,2,3,6, and 0, respectively. Let ¢ = yp, and
¢ = ¢P# be the maps defining S(Dp) and let y := yp, and § = @20
be the maps defining S(Dy). Further, let @ := yp,: F; — G, ® G3 and
B = ¢P": F; — Gg be the maps defining S(Dy), and let @, = I ®  and
B* = I®p be the extensions of @ and B by an identity on an extra factor
of Gy, so that 8f o} = I, ® S(Dy). Let u map any big face to the sum of
G gaps around it, plus the sum of the inner faces it contains. Let v map
any big face to the sum of the outer faces it contains. It is easy to see
that the master diagram (M D) shown on the right, made of all of these
spaces and maps, is commutative.
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Fg——Fp

e b

G1$G2®G3f:G1®F1?G1$G6

Claim. The bottom right square of (M D) is an Fp—">F,

equalizer square, namely Fp ~ EQ(8",v). He- u vy

nce viu" =y Bl Gi®F; > G 8Ge
Proof. A big face (an element of F) is a sum of outer fades f, and a
sum of inner faces f;, and it has a boundary g, on input cycle 1, su-
ch that the boundary of the outer pieces f, is equal to the boundary
of the inner pieces f; plus g;. That matches perfectly with the defini-
tion of the equalizer: EQ(B",7) = (g1, fir f): B (g1, f) = ¥(f)) =
(g1, fis Jo) : ¥(fo) = (g1, BUN}. o

Proof of Theorem 4. With notation as above, with the example abo-
ve (which is general enough), and with the claim above, and also u-
sing functoriality, we have S(Dp) = ¢.y* = d.v.ual = 6.y Bral =
S(Do) o (I, ® S(Dy)), as required. |
Proof of Theorem 5. We need to verify the Reidemeister moves and
that was done in the computational section, and the statement about the
restriction to links, which is easy: simply assemble an n-crossing knot
using an n-input planar connection diagram, and the formulas clearly
match. |

Further Homework.

Exercise 6. By taking U = 0 in the reciprocity statement, prove that
always o (¢.S) = o(S). But that seems wrong, if ¢ = 0. What saves the
day?

Exercise 7. By taking S = 0 in the reciprocity statement, frove that
always o(¢*U) = o(U). But wait, this is nonsense! What went wrong?
Exercise 8. Given ¢: V — W and a subspace D C V, show that there
is a unique subspace ¢.D C W such that for every quadratic Q on W,

o(¢*0lp) = o(Qlg.p)-

Exercise 9. When are diagrams as on the ri- Y
ght equalizer diagrams? What then do we learn \
from Theorem 3? v
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Exercise 10. There are 11 types or irreducible commutative squares:
1-0, 0=1, 00, 0=0, 1=1, 0=1, O0=1, 0=0,
A S S A A T T T T S S L A NN B

0=0 0=0 1=0 0=1 0=0 O0=1 O0=1 11

O0=1, 1=1,and 1=1. Show that pushing commutes with pul-
Vv oty viny
1-=1 1=0 1=1
ling for all but four of them. Compare with the statement of Theorem 3.
Exercise 11. Prove that a square is admissible iff it is an equalizer squa-
re, with an additional direct summand A added to the Y term, and with
the maps i and v extended by 0 on A.
Exercise 12. Prove that the direct sum of two admissible squares is a-
dmissible. Warning: Harder than it seems! Not all quadratics on V, &V,
are direct sums of quadratics on V| and on V;.
Exercise 13. Given a quadratic Q on a space V, let 7 be the projection
V — V/rad(Q) and show that 7,Q = Q/ rad(Q), with the obvious defi-
nition for the latter.
Exercise 14. Show that for any partial quadratic Q on a space W the-
re exists a space A and a fully-defined quadratic ' on W & A such
that 7.FF = Q, where 1: W @ A — W is the projection (these are
not unique). Furthermore, if ¢: V — W, then ¢*Q = m.¢ F, whe-
reg, = ¢p®I1: V®A — W A and r also denotes the projection
VeA—-V.
Solutions / Hints.
s 9281 19dio adi jon 3ud sn0 Yo aismob sdi i 10109v 8 01O .1 101 IniH
.omisagie ol 1owol 10 9zist lliw 1sdi 3 101 sulsv 2nosgso
.0 = |Q buas [snogsib 2i |Q DOIW <101 1aiH
S = (O)Q diiw J Jenisgs 1661 3291 o1 dguons 231 .2 10t 1niH
() ai 2,010 1nsq “ttide” odT .0 10t 30iH
brs) “§ i oo 0 oilsibsup Wwivwng o 231 0 1'mei 2, .V 101 10iH
[(ovidosqmwe 2i § 1t (U)o = (U*9)o bosbai
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Video: http://www.math.toronto.edu/~drorbn/Talks/Geneva-231201. Handout:
http://www.math.toronto.edu/~drorbn/Talks/USC-240205.
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