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Cars, Interchanges, Traffic Counters, and some Pretty Darned Good Knot Invariants
University of Toronto: Dror Bar-Natan: Talks: Nara-2308:
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We seek strong, fast, homomorphic knot and tangle invariants.
Strong. Having a small “kernel”.
Fast. Computable even for large knots (best: poly time).

d1

Why care for “Homomorphic”? Theorem. A knot K is ribbon
iff there exists a 2n-component tangle T with skeleton as below
such that τ(T ) = K and where δ(T ) = U is the untangle:

Homomorphic. Extends to tan-
gles and behaves under tangle
operations; especially gluings
and doublings:

K

τ

Hear more at ωεβ/AKT.
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ωεβBhttp://drorbn.net/na23Thanks for inviting me to Nara!

Abstract. Reporting on joint w-
ork with Roland van der Veen, I’ll
tell you some stories about ρ1, an
easy to define, strong, fast to compute, homomorphic,
and well-connected knot invariant. ρ1 was first studied by Ro-
zansky and Overbay [Ro1, Ro2, Ro3, Ov] and Ohtsuki [Oh2],
it has far-reaching generalizations, it is elementary and domina-
ted by the coloured Jones polynomial, and I wish I understood it.
Common misconception. Dominated, elementary⇒ lesser.

Formulas. Draw an n-crossing knot K as on the ri-
ght: all crossings face up, and the edges are marked
with a running index k ∈ {1, . . . , 2n + 1} and with
rotation numbers φk. Let A be the (2n+1)× (2n+1)
matrix constructed by starting with the identity ma-
trix I, and adding a 2 × 2 block for each crossing:

ij

s = −1

Let G = (gαβ) = A−1. For the trefoil example, it is:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



,

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 − (T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1



Note. The Alexander polynomial ∆ is given by

∆ = T (−φ−w)/2 det(A), with φ =
∑

k

φk, w=
∑

c

s.

Classical Topologists: This is boring. Yawn.

A col i+1 col j+1
row i −T s T s − 1
row j 0 −1

c :

i j

s = +1

φ
4
=
−1

Formulas, continued. Finally, set

R1(c) B s
(
g ji

(
g j+1, j + g j, j+1 − gi j

)
− gii

(
g j, j+1 − 1

)
− 1/2

)

ρ1 B ∆2


∑

c

R1(c) −
∑

k

φk (gkk − 1/2)

 .

In our example ρ1 = −T 2 + 2T − 2 + 2T−1 − T−2.
Theorem. ρ1 is a knot invariant. Proof: later.
Classical Topologists: Whiskey Tango Foxtrot?

Cars, Interchanges, and Traffic
Counters. Cars always drive forw-
ard. When a car crosses over a bridge
it goes through with (algebraic) pro-
bability T s ∼ 1, but falls off with probability 1 − T s ∼ 0∗. At the
very end, cars fall off and disappear. See also [Jo, LTW].

More at ωεβ/APAI
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“The Green Function”

Jones:
Formulas stay;
interpretations change with time.

∗ In algebra x ∼ 0 if for every y in the ideal generated by x, 1 − y is invertible.

1−T T 1 0 0 T−11 1−T−1

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout:
http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.
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