Theorem. The Green function $g_{\alpha\beta}$ is the reading of a traffic counter at β , if car traffic is injected at α (if $\alpha = \beta$, the counter is *after* the injection point).

Example.

$$\sum_{p\geq 0}(1-T)^p = T^{-1} \qquad T^{-1} \qquad 0 \\ 1 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 1 \qquad G = \begin{pmatrix} 1 & T^{-1} & 1 \\ 0 & T^{-1} & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

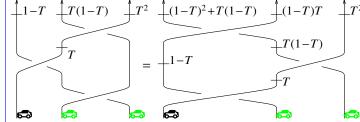
α 🖚

Proof. Near a crossing *c* with sign *s*, incoming upper edge *i* and incoming lower edge *j*, both sides satisfy the *g*-rules:

 $g_{i\beta} = \delta_{i\beta} + T^s g_{i+1,\beta} + (1 - T^s) g_{j+1,\beta}, \quad g_{j\beta} = \delta_{j\beta} + g_{j+1,\beta},$ and always, $g_{\alpha,2n+1} = 1$: use common sense and AG = I (= GA). **Bonus.** Near *c*, both sides satisfy the further *g*-rules:

$$g_{\alpha i} = T^{-s}(g_{\alpha,i+1} - \delta_{\alpha,i+1}), \quad g_{\alpha j} = g_{\alpha,j+1} - (1 - T^s)g_{\alpha i} - \delta_{\alpha,j+1}.$$

Invariance of ρ_1 . We start with the hardest, Reidemeister 3:



 \Rightarrow Overall traffic patterns are unaffected by Reid3!

 \Rightarrow Green's $g_{\alpha\beta}$ is unchanged by Reid3, provided the cars injection site α and the traffic counters β are away.

⇒ Only the contribution from the R_1^{k} terms within the Reid3 move matters, and using *g*-rules the relevant $g_{\alpha\beta}$'s can be pushed outside of the Reid3 area:

 $\begin{aligned} \mathbf{gRules}_{s_{j},i_{j},j_{j}} &:= & |i \quad (j \quad)k \quad (i \quad)j \\ \left\{ \mathbf{g}_{i\beta_{j}} \Rightarrow \delta_{i\beta} + \mathbf{T}^{s} \mathbf{g}_{i^{+},\beta} + \left(\mathbf{1} - \mathbf{T}^{s} \right) \mathbf{g}_{j^{+},\beta}, \mathbf{g}_{j\beta_{j}} \Rightarrow \delta_{j\beta} + \mathbf{g}_{j^{+},\beta}, \end{aligned} \end{aligned}$

 $g_{\alpha_{-},i} \Rightarrow T^{-s} (g_{\alpha,i^{+}} - \delta_{\alpha,i^{+}}),$ $g_{\alpha_{-}j} \Rightarrow g_{\alpha,j^{+}} - (1 - T^{s}) g_{\alpha i} - \delta_{\alpha,j^{+}}$ $lhs = R_{1}[1, j, k] + R_{1}[1, i, k^{+}] + R_{1}[1, i^{+}, j^{+}] //.$

rhs = R₁[1, i, j] + R₁[1, i⁺, k] + R₁[1, j⁺, k⁺] //. gRules_{1,i,j} ∪ gRules_{1,i⁺,k} ∪ gRules_{1,j⁺,k⁺};

Simplify[lhs == rhs]

True

Next comes Reid1, where we use results from an earlier example: (e.g., [Sch]). So ρ_1 is not alone!

$$R_{1}[1, 2, 1] - 1 (g_{22} - 1/2) / . g_{\alpha_{-},\beta_{-}} \Rightarrow \begin{pmatrix} 1 & T^{-1} & 1 \\ 0 & T^{-1} & 1 \\ 0 & 0 & 1 \end{pmatrix} \llbracket \alpha, \beta \rrbracket$$

$$\frac{1}{T^{2}} - \frac{1}{T} - \frac{-1 + \frac{1}{T}}{T} = \bigcirc$$
Invariance under the other moves is proven similarly.

Wearing my Topology hat the formula for R_1 , and even the idea to look for R_1 , remain a complete mystery to me.

Wearing my Quantum Algebra hat, I spy a Heisenberg algebra $\mathbb{H} = A\langle p, x \rangle / ([p, x] = 1)$:

cars
$$\leftrightarrow p$$
 traffic counters $\leftrightarrow x$

Where did it come from? Consider $g_{\epsilon} := sl_{2+}^{\epsilon} := L\langle y, b, a, x \rangle$ with relations

$$[b, x] = \epsilon x, \quad [b, y] = -\epsilon y, \quad [b, a] = 0,$$

[a, x] = x, [a, y] = -y, $[x, y] = b + \epsilon a$.

At invertible ϵ , it is isomorphic to sl_2 plus a central factor, and it can be quantized à la Drinfel'd [Dr] much like sl_2 to get an algebra $QU = A\langle y, b, a, x \rangle$ subject to (with $q = e^{\hbar \epsilon}$):

$$[b, a] = 0, \quad [b, x] = \epsilon x, \quad [b, y] = -\epsilon y,$$
$$[a, x] = x, \quad [a, y] = -y, \quad xy - qyx = \frac{1 - e^{-\hbar(b + \epsilon a)}}{\hbar}.$$

 T^2 Now QU has an R-matrix solving Yang-Baxter (meaning Reid3),

$$R = \sum_{m,n\geq 0} \frac{y^n b^m \otimes (\hbar a)^m (\hbar x)^n}{m! [n]_q!}, \quad ([n]_q! \text{ is a "quantum factorial"})$$

and so it has an associated "universal quantum invariant" à la Lawrence and Ohtsuki [La, Oh1], $Z_{\epsilon}(K) \in QU$.

Now $QU \cong \mathcal{U}(\mathfrak{g}_{\epsilon})$ (only as algebras!) and $\mathcal{U}(\mathfrak{g}_{\epsilon})$ represents into \mathbb{H} via

$$y \to -tp - \epsilon \cdot xp^2$$
, $b \to t + \epsilon \cdot xp$, $a \to xp$, $x \to x$,
(abstractly, g_{ϵ} acts on its Verma module

$$\mathcal{U}(\mathfrak{g}_{\epsilon})/(\mathcal{U}(\mathfrak{g}_{\epsilon})\langle y, a, b - \epsilon a - t \rangle) \cong \mathbb{Q}[x]$$

by differential operators, namely via \mathbb{H}), so *R* can be pushed to $\mathcal{R} \in \mathbb{H} \otimes \mathbb{H}$.

Everything still makes sense at $\epsilon = 0$ and can be expanded near $\epsilon = 0$ resulting with $\mathcal{R} = \mathcal{R}_0(1 + \epsilon \mathcal{R}_1 + \cdots)$, with $\mathcal{R}_0 = e^{t(xp \otimes 1 - x \otimes p)}$ and \mathcal{R}_1 a quartic polynomial in p and x. So p's and x's get created along K and need to be pushed around to a standard location ("normal ordering"). This is done using

$$(p \otimes 1)\mathcal{R}_0 = \mathcal{R}_0(T(p \otimes 1) + (1 - T)(1 \otimes p)),$$

(1 \otimes p)\mathcal{R}_0 = \mathcal{R}_0(1 \otimes p),

and when the dust settles, we get our formulas for ρ_1 . But QU is a quasi-triangular Hopf algebra, and hence ρ_1 is homomorphic. Read more at [BV1, BV2] and hear more at $\omega \epsilon \beta$ /SolvApp,

ωεβ/Dogma, ωεβ/DoPeGDO, ωεβ/FDA, ωεβ/AQDW.Also, we can (and know how to) look at higher powers of ϵ and we can (and more or less know how to) replace sl_2 by arbitrary semi-simple Lie algebra

These constructions are very similar to Rozansky-Overbay [Ro1, Ro2, Ro3, Ov] and hence to the "loop expansion" of the Kontsevich integral and the coloured Jones polynomial [Oh2].

If this all reads like **insanity** to you, it should (and you haven't seen half of it). Simple things should have simple explanations. Hence, **Homework.** Explain ρ_1 with no reference to quantum voodoo and find it a topology home (large enough to house generalizations!). Make explicit the homomorphic properties of ρ_1 . Use them to do topology!

P.S. As a friend of Δ , ρ_1 gives a genus bound, sometimes better than Δ 's. How much further does this friendship extend?

Video: http://www.math.toronto.edu/~drorbn/Talks/Oaxaca-2210. Handout: http://www.math.toronto.edu/~drorbn/Talks/Nara-2308.