Unfortunately, dim $\mathcal{A}(\mathcal{X}, X) = \dim \Lambda(\mathcal{X}, X) = 4^{|X|}$ is big. Fortunately, we have the following theorem, a version of one of the main results in Halacheva's thesis, [Ha1, Ha2]:

Theorem. Working in $\Lambda(\mathcal{X} \cup X)$, if $w = \omega e^{\lambda}$ is a balanced Gaussian (namely, a scalar ω times the exponential of a quadratic $\lambda = \sum_{\zeta \in \mathcal{X}, z \in X} \alpha_{\zeta, z} \zeta z$), then generically so is $c_{x,\xi} e^{\lambda}$.

Thus we have an almost-always-defined " Γ -calculus": a contraction algebra morphism $\mathcal{T}(\mathcal{X}, X) \to R \times (\mathcal{X} \otimes_{R/R} X)$ whose behaviour under contractions is

 $c_{x,\xi}(\omega,\lambda=\mu+\eta x+\xi y+\alpha\xi x)=((1-\alpha)\omega,\mu+\eta y/(1-\alpha)).$

(Γ is fully defined on pure tangles – tangles without closed components – and

(This is great news! The space of balanced quadratics is only $|\mathcal{X}||X|$ -dimensional!)

Proof. Recall that $c_{x,\xi}$: $(1, \xi, x, x\xi)w' \mapsto (1, 0, 0, 1)w'$, write $\lambda = \mu + \eta x + \xi y + \alpha \xi x$, and ponder $e^{\lambda} =$

$$\dots + \frac{1}{k!} \underbrace{(\mu + \eta x + \xi y + \alpha \xi x)(\mu + \eta x + \xi y + \alpha \xi x) \cdots (\mu + \eta x + \xi y + \alpha \xi x)}_{k \text{ factors}} + \dots$$

Then $c_{\mathrm{x},\xi} \mathrm{e}^{\lambda}$ has three contributions:

- \blacktriangleright e^{μ} , from the term proportional to 1 (namely, independent of ξ and x) in e^{λ}
- ► $-\alpha e^{\mu}$, from the term proportional to $x\xi$, where the x and the ξ come from the same factor above.
- ηye^μ, from the term proportional to xξ, where the x and the ξ come from different factors above.

So $c_{x,\xi} e^{\lambda} = e^{\mu} (1 - \alpha + \eta y) = (1 - \alpha) e^{\mu} (1 + \eta y/(1 - \alpha)) = (1 - \alpha) e^{\mu} e^{\eta y/(1 - \alpha)} = (1 - \alpha) e^{\mu + \eta y/(1 - \alpha)}$.

Γ-calculus.

given by

hence on long knots).

6. An Implementation of Γ .

If I didn't implement I wouldn't believe myself.

Written in Mathematica [Wo], available as the notebook Gamma.nb at http://drorbn.net/mo21/ap. Code lines are highlighted in grey, demo lines are plain. We start with canonical forms for quadratics with rational function coefficients:

CCF[8_] := Factor[8];

 $\mathsf{CF}[\mathcal{S}_{]} := \mathsf{Module}[\{\mathsf{vs} = \mathsf{Union}@\mathsf{Cases}[\mathcal{S}, (\xi \mid \mathsf{x})_{}, \infty]\},$

Total[(CCF[#[[2]]] (Times @@ vs^{#[[1]})) & /@ CoefficientRules[&, vs]]];

```
Multiplying and comparing Γ objects:
r /: r[is1_, os1_, cs1_, ω1_, λ1_] × r[is2_, os2_, cs2_, ω2_, λ2_] :=
r[is1∪is2, os1∪os2, Join[cs1, cs2], ω1ω2, λ1 + λ2]
r /: r[is1_, os1_, _, ω1_, λ1_] = r[is2_, os2_, _, ω2_, λ2_] :=
TrueQ[(Sort@is1 === Sort@is2) ∧ (Sort@os1 === Sort@os2) ∧
Simplify[ω1 == ω2] ∧ CF@λ1 == CF@λ2]
```

No rules for linear operations!

Contractions: $\begin{aligned}
\mathbf{C}_{h_{-},t_{-}} &\cong \Gamma[is_{-}, os_{-}, cs_{-}, \omega_{-}, \lambda_{-}] := \mathsf{Module}[\{\alpha, \eta, y, \mu\}, \\
\alpha &= \partial_{\xi_{1},x_{h}}\lambda; \; \mu = \lambda / . \; \xi_{t} \mid x_{h} \to \mathbf{0}; \\
\eta &= \partial_{x_{h}}\lambda / . \; \xi_{t} \to \mathbf{0}; \; y = \partial_{\xi_{t}}\lambda / . \; x_{h} \to \mathbf{0}; \\
\Gamma[& \mathsf{DeleteCases}[is, t], \mathsf{DeleteCases}[os, h], \mathsf{KeyDrop}[cs, \{x_{h}, \xi_{t}\}], \\
\mathsf{CCF}[(1-\alpha) \; \omega], \mathsf{CF}[\frac{\mu + \eta \; y / (1-\alpha)}{2}] \\
] / . \; \mathsf{If}[\mathsf{MatchQ}[cs[\xi_{t}], \tau_{-}], \; cs[\xi_{t}] \to cs[x_{h}], \; cs[\xi_{t}]]; \\
\mathsf{CeF}[is_{-}, os_{-}, cs_{-}, \omega_{-}, \lambda_{-}] := \mathsf{Fold}[\mathsf{c}_{x_{2},x_{2}}[\#1] \; \&, \; \Gamma[is, os, cs, \omega, \lambda], \; is \cap os]
\end{aligned}$

```
The crossings and the point:

\begin{split} &\Gamma[X_{i_{\perp},j_{\perp},k_{\perp},l_{\perp}}[S_{\perp},T_{\perp}]] := \Gamma[\{l,i\}, \{j,k\}, \langle |\xi_{l} \rightarrow S, \mathbf{x}_{j} \rightarrow T, \mathbf{x}_{k} \rightarrow S, \xi_{l} \rightarrow T | \rangle, \\ &T^{-1/2}, \mathsf{CF}[\{\xi_{l},\xi_{l}\}, \left(\frac{1}{\theta} - T\right), \{\mathbf{x}_{j}, \mathbf{x}_{k}\}]]; \\ &\Gamma[\overline{X}_{i_{\perp},j_{\perp},k_{\perp},l_{\perp}}[S_{\perp},T_{\perp}]] := \Gamma[\{i,j\}, \{k,l\}, \langle |\xi_{l} \rightarrow S, \xi_{j} \rightarrow T, \mathbf{x}_{k} \rightarrow S, \mathbf{x}_{l} \rightarrow T | \rangle, \\ &T^{1/2}, \mathsf{CF}[\{\xi_{i},\xi_{j}\}, \left(\frac{T^{-1}}{1,T^{-1}}\right), \{\mathbf{x}_{k}, \mathbf{x}_{l}\}]]; \\ &\Gamma[\overline{X}_{i_{\perp},j_{\perp},k_{\perp},l_{\perp}}] := \Gamma[\overline{X}_{i,j,k,l}[\tau_{i}, \tau_{l}]]; \\ &\Gamma[\overline{X}_{i_{\perp},j_{\perp},k_{\perp},l_{\perp}}] := \Gamma[\overline{X}_{i,j,k,l}[\tau_{i}, \tau_{j}]]; \\ &\Gamma[\overline{Y}_{i_{\perp},j_{\perp},k_{\perp},l_{\perp}}] := \Gamma[\overline{Y}_{i,j,k,l}[\tau_{i}, \tau_{j}]]; \\ &\Gamma[\theta_{i_{\perp},j_{\perp}}] := \Gamma[\{i\}, \{j\}, \langle |\xi_{l} \rightarrow T, \mathbf{x}_{j} \rightarrow T | \rangle, \mathbf{1}, \xi_{i}, \mathbf{x}_{j}]; \\ &\Gamma[\theta_{i_{\perp},j_{\perp}}] := \Gamma[\theta_{i,j}[\tau_{l}]]; \end{split}
```

Automatic intelligent contractions:

Video and more at http://www.math.toronto.edu/~drorbn/Talks/MoscowByWeb-2104/