
So What? If V is a representation, then V⊗n explodes as a func-
tion of n, while in DoPeGDO up to a fixed power of ε, the ranks
of mor(A→ B) grow polynomially as a function of |A| and |B|.
Compositions. In mor(A→B),
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and so (remember, ex = 1 + x + xx/2 + xxx/6 + . . .)
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where • E = E1(I − F2G1)−1E2.
• F = F1 + E1F2(I −G1F2)−1ET

1 .
• G = G2 + ET

2 G1(I − F2G1)−1E2.
• ω = ω1ω2 det(I − F2G1)−1.
• P is computed as the solution of a
messy PDE or using “connected Feyn-
man diagrams” (yet we’re still in pure
algebra!). Docility is preserved.

DoPeGDO Footnotes. Each variable has a “weight”∈ {0, 1, 2},
and always wt zi + wt ζi = 2.
†1. Really, “weight-graded finite sets” A = A0 t A1 t A2.
†2. Really, a power series in the weight-0 variables†5.
†3. The weight of Q must be 2, so it decomposes as Q =

Q20+Q11. The coefficients of Q20 are rational numbers while
the coefficients of Q11 may be weight-0 power series†5.

†4. Setting wt ε = −2, the weight of P is ≤ 2 (so the powers of
the weight-0 variables are not constrained)†5.

†5. In the knot-theoretic case, all weight-0 power series are ra-
tional functions of bounded degree in the exponentials of the
weight-0 variables.

†6. There’s also an obvious product
mor(A1 → B1)×mor(A2 → B2)→ mor(A1tA2 → B1tB2).
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Analog. Solve
Ax = a, B(x)y = b

Full DoPeGDO. Compute com-
positions in two phases:
• A 1-1 phase over the ring of
power series in the weight-0 vari-
ables, in which the weight-2 vari-
ables are spectators.
• A (slightly modified) 2-0 phase
over Q, in which the weight-1
variables are spectators.

Questions. • Are there QFT precedents for “two-step Gaussian
integration”?
• In QFT, one saves even more by considering “one-particle-
irreducible” diagrams and “effective actions”. Does this mean
anything here?
• Understanding Hom(Q[zA]→ Q[zB]) seems like a good cause.
Can you find other applications for the technology here?


QU = U~(slε2+
) = A〈y, b, a, x〉~~� with [a, x] = x, [b, y] = −εy, [a, b] = 0,

[a, y] = −y, [b, x] = εx, and xy−qyx = (1−AB)/~, where q = e
~ε , A = e

−~εa,
and B = e

−~b. Also ∆(y, b, a, x) = (y1 + B1y2, b1 + b2, a1 + a2, x1 + A1 x2),
S (y, b, a, x) = (−B−1y,−b,−a,−A−1 x), and R =

∑
~ j+kykb j ⊗ a j xk/ j![k]q!.



Theorem. Everything of value regrading U = CU and/or its
quantization U = QU is DoPeGDO:

?

m : U ⊗ U→U ∆ : U→U ⊗ UC±1∈QU

cup cap

R∈QU ⊗ QU

S : U→U tr : U→U/wx=xw Φ∈CU⊗3 J∈CU ⊗CU

also Cartan’s θ, the Dequantizator, and more, and all of their
compositions.

4D Metrized Lie Algebras
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slε2+

algebras isomorphic
to sl2+ B sl2 + 1D

Solvable Approximation. In
sln, half is enough! Indeed
sln ⊕ an−1 = D(^, b, δ). Now
define slεn+ B D(^, b, εδ).
Schematically, this is [^,^] = ^,
[_,_] = ε_, and [^,_] =

_+ ε^. The same process works
for all semi-simple Lie algebras,
and at εk+1 = 0 always yields a
solvable Lie algebra.

b, δ

b(^) = b : ^ ⊗^→ ^

b(_) { δ : ^→ ^ ⊗^⊕ {{

Conclusion. There are lots of poly-time-computable well-
behaved near-Alexander knot invariants: • They extend to tan-
gles with appropriate multiplicative behaviour. • They have ca-
bling and strand reversal formulas. ωεβ/akt
The invariant for slε2+

/(ε2 = 0) (prior art: ωεβ/Ov) attains
2,883 distinct values on the 2,978 prime knots with ≤ 12 cross-
ings. HOMFLY-PT and Khovanov homology together attain
only 2,786 distinct values.
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0a
1 1 0 / 4

0 0 / 4

0

3a
1 T−1 1 / 8

T 1 / 8

3T 3−12T 2 +26T−38

4a
1 3−T 1 / 8

0 1 / 4

T 4−3T 3−15T 2 +74T−110
5a

1 T 2−T +1 2 / 8

2T 3+3T 2 / 8

5T 7−20T 6 +55T 5−120T 4 +217T 3−338T 2 +450T−510

5a
2 2T−3 1 / 8

5T−4 1 / 8

−10T 4 +120T 3−487T 2 +1054T−1362

6a
1 5−2T 1 / 4

T−4 1 / 8

14T 4−16T 3−293T 2 +1098T−1598
6a

2 −T 2+3T−3 2 / 8

T 3−4T 2+4T−4 1 / 8

3T 8−21T 7 +49T 6 +15T 5−433T 4 +1543T 3−3431T 2 +5482T−6410

6a
3 T 2−3T +5 2 / 8

0 1 / 4

4T 8−33T 7 +121T 6−203T 5−111T 4 +1499T 3−4210T 2 +7186T−8510

7a
1 T 3−T 2+T−1 3 / 8

3T 5+5T 3+6T 3 / 8

7T 11−28T 10 +77T 9−168T 8 +322T 7−560T 6 +891T 5−1310T 4 +

1777T 3−2238T 2 +2604T−2772

2Video and more at http://www.math.toronto.edu/~drorbn/Talks/Columbia-191125/
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