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Strand Doubling and Reversal.

though they are yet to be explored and utilized.
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Genus. Every knot is the boundary of an orie-
ntable “Seifert Surface” (wef3/SS), and the least
of their genera is the “genus” of the knot.

Claim. The knots of genus < 2 are precisely the
images of 4-component tangles via :
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'Vo’s Thesis [Vo]. A proof of the Fox-Milnor theorem for
ribbon knots using this technology (and more).
Implementation key idea:
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... divide and conquer!
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a ribbon singularity  a clasp singularity

A Bit about Ribbon Knots. A “ribbon knot” is a knot that can be
presented as the boundary of a disk that has “ribbon singularities”,
but no “clasp singularities”. A “slice knot” is a knot in S> = dB*
which is the boundary of a non-singular disk in B*. Every ribbon
knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

I[Fox-Milnor. The Alexander polynomial of a ribbon knot is always
of the form A(¢) = f(©)f(1/1). (also for slice)
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Fact. I is better viewed as an invariant of

Theorem. K is ribbon iff it is k7" for a tangle 7 for which 77 is
the untangle U.
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Faster is better, leaner is meaner!

a certain class of 2D knotted objects in R* ¥
[BND, BN].

Fact. I is the “O-loop” part of an inva-
riant that generalizes to “n-loops” (1D tangles
only, see further talks and future publications
with van der Veen).

Speculation. Stepping stones to categorifica-
tion?

M. Polyak & T. Ohts
@ Heian Shrine, Kyoto

Ask me about geography vs. identity!
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The Gold Standard is set by the “T-calculus” Alexan-

7 der formulas [BNS, BN]. An S-component tangle 7" has

[(T) € Rs X Mgxs(Rs) = {%%} with Rs = Z({T,: a € S)):
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[For long knots, w is Alexander, and that’s the fastest
lAlexander algorithm I know!  Dunfield: 1000-crossing fast.
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“God created the knots, all else in
topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas.org Tre ‘%nczf»

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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