
Theorem. A knot K is ribbon iff there exists a tangle T whose 𝜏 closure is the untangle and whose 
κ closure is K.

Proof. The backward ⟸ implication is easy:

For the forward implication, follow the following 5 steps:

Step 5: Pulling bottom handles
avoiding the obstacles.
At end: Theorem is proven.

Step I: In-situ cosmetics.
At end: D is a tree of chord-and-arc polygons.

Step 2: Near-situ cosmetics.
At end: D is tree-band-sum of n unknotted disks.

Step 3: Slides.
At end: D is a linear-band-sum of n unknotted disks.

Step 4: Exposure!
The green domain is contractible - so it can be shrank,
moved at will (with the blue membrane following along),
and expanded back again.
At end: D has (n-1) exposed bridges which when turned,
make D a union of n unknotted disks.

Proof of the Tangle Characterization of Ribbon Knots

      

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Macquarie-191016/
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