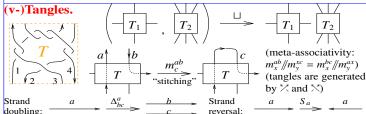
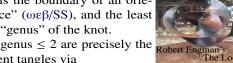
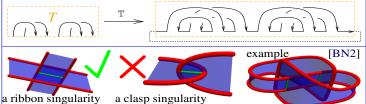


Solvable Approximations of the Quantum sl₂ Portfolio


Our Main Theorem (loosely stated). Everything that matters in the quantum sl_2 portfolio can be continuously expressed in terms of docile perturbed Gaussians using solvable approximations. \(\chi \) Our Main Points.

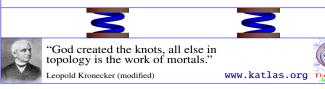
- What in it "matters" and why? (the most important question)
- What's "solvable approximation"? What's "continuously"?
- What are "docile perturbed Gaussians"?
- Why do they matter? (2nd most important)
- How proven? (docile) How implemented? (sacred; the work of unsung heroes)
- Some context and background.
- What's next?

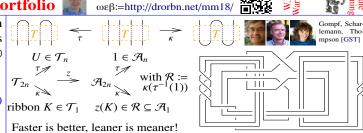

The quantum sl₂ Portfolio includes a classical universal enveloping algebra CU, its quantization QU, their tensor


powers $CU^{\otimes S}$ and $QU^{\otimes S}$ with the "tensor operations" \otimes , their products m_k^{ij} , coproducts Δ_{jk}^i and antipodes S_i , their Cartan automophisms $C\theta: CU \to CU$ and $Q\theta: QU \to QU$, the "dequantizators" $A\mathbb{D}: QU \to CU$ and $S\mathbb{D}: QU \to C\overline{U}$, and most impor- For long knots, ω is Alexander, and that's the fastest tantly, the R-matrix R and the Drinfel'd element s. All this in any Alexander algorithm I know! Dunfield: 1000-crossing fast. PBW basis, and change of basis maps are included.

Genus. Every knot is the boundary of an orientable "Seifert Surface" (ωεβ/SS), and the least of their genera is the "genus" of the knot.

Claim. The knots of genus ≤ 2 are precisely the Robert Engman's images of 4-component tangles via

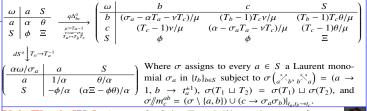


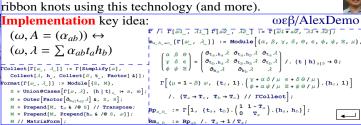


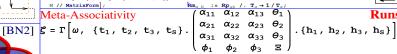
A Bit about Ribbon Knots. A "ribbon knot" is a knot that can be presented as the boundary of a disk that has "ribbon singularities", but no "clasp singularities". A "slice knot" is a knot in $S^3 = \partial B^4$ which is the boundary of a non-singular disk in B^4 . Every ribbon knots is clearly slice, yet,

Conjecture. Some slice knots are not ribbon.

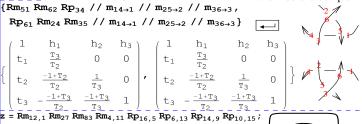
Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form A(t) = f(t)f(1/t). (also for slice)

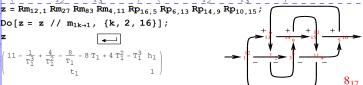



The Gold Standard is set by the "Γ-calculus" Alexander formulas [BNS, BN1]. An S-component tangle T has


$$S(T) \in R_S \times M_{S \times S}(R_S) = \left\{ \begin{array}{c|c} \omega & S \\ \hline S & A \end{array} \right\} \text{ with } R_S := \mathbb{Z}(\{t_a : a \in S\}):$$

(Roland: "add to A the product of column b and row a, divide by $(1 - A_{ab})$, delete column b and row a".)




Vo's Thesis [Vo]. A proof of the Fox-Milnor theorem for

