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Abstract. I will describe the general “expansions” machine
whose inputs are topics in topology (and more) and whose
outputs are problems in algebra. There are many inputs
the machine can take, and many outputs it produces, but I
will concentrate on just one input/output pair. When fed
with a certain class of knotted 2-dimensional objects in 4-
dimensional space, it outputs the Kashiwara-Vergne Prob-
lem (1978 w/KV, solved Alekseev-Meinrenken 2006 w/AM,
elucidated Alekseev-Torossian 2008-2012 w/AT), a problem
about convolutions on Lie groups and Lie algebras.

The Kashiwara-Vergne Conjecture. There exist
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ment: Convolutions of invariant functions on a  Meinrenken
Lie group agree with convolutions of invariant

functions on its Lie algebra. Torossiang
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Q, g; € G} its group-ring, Z = {>_aigi: > a; =0} C K its
augmentation ideal. Let P.S. (IK/T™+1)* is Vassiliev
~ / finite-type / polynomial in-
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Note that A inherits a product from G.
Definition. A linear Z: K — A is an “expansion” if for any
vy E€TI™ Z(v)=(0,...,0,7/Z™* ! %,...), and a “homomor-
phic expansion” if in addition it preserves the product.
Example. Let K = C*(R") and Z = {f: f(0) = 0}. Then

The Double Inflation Procedure.
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mogeneous polynomials and A = {power series}. The Taylor
series is a homomorphic expansion!
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\L An expansion Z is a choice of a

phic expansions for wkC and the set of solutions
of the Kashiwara-Vergne problem. This is the tip |
of a major iceberg! Dancso, w/ZD
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In the finitely presented case, finding Z amounts to solving Tz Unzip along an annulus Un21p along a disk
a system of equations in a graded space. The Machine general-|"" ke 2 Kot \ Kerg and morc!
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. “God created the knots, all else

: _ topology is the work of mortals.”

Leopold Kronecker (modified)
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/Leiden-1601/
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