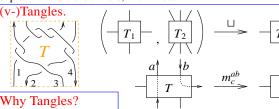
Dror Bar-Natan: Talks: LesDiablerets-1508


ωεβ:=http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/

Work in Progress on Polynomial Time Knot Polynomials, A

Abstrant. The value of things is inversely correlated with their Meta-Associativity computational complexity. "Real time" machines, such as our $g = \Gamma \left[\omega, \{t_1, t_2, t_3, t_8\} \right]$. brains, only run linear time algorithms, and there's still a lot we

don't know. Anything we learn about things doable in linear time is truly valuable. Polynomial time we can in-practice run, even if we have to wait; these $|(\xi // m_{12\rightarrow 1} // m_{13\rightarrow 1})| = (\xi // m_{23\rightarrow 2} // m_{12\rightarrow 1})|$ things are still valuable. Exponential time we can play with, but just a little, and exponential things must be beautiful or philosophically compelling to deserve attention. Values further diminish and the aesthetic-or-philosophical bar further rises as we go further slower, or un-computable, or ZFC-style intrinsically infinite, or large-cardinalish, or beyond.

I will explain some things I know about polynomial time knot polynomials and explain where there's more, within reach.

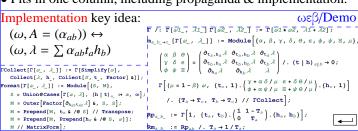
- Finitely presented.
 - (meta-associativity: $m_a^{ab}/m_a^{ac} = m_b^{bc}/m_a^{ab}$)
- Divide and conquer proofs and computations.
- "Algebraic Knot Theory": If K is ribbon, $z(K) \in \{cl_2(\zeta) : cl_1(\zeta) = 1\}.$

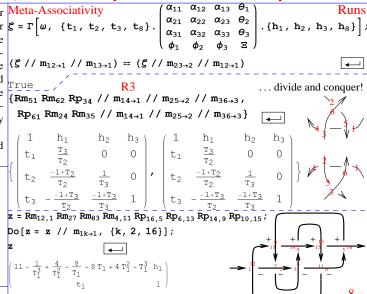
(Genus and crossing number are also definable properties).

Faster is better, leaner is meaner!

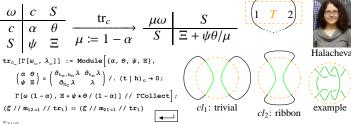
 \exists ! an invariant z_0 : {pure framed S-component tangles} $\rightarrow \Gamma_0(S) := R \times M_{S \times S}(R)$, where $R = R_S = \mathbb{Z}((T_a)_{a \in S})$ is the ring of rational functions in S variables, intertwining

$$\left(\begin{array}{c|c|c}
\omega_1 & S_1 \\
\hline
S_1 & A_1
\end{array}, \begin{array}{c|c}
\omega_2 & S_2 \\
\hline
S_2 & A_2
\end{array}\right) \xrightarrow{\square}
\left(\begin{array}{c|c|c}
\omega_1\omega_2 & S_1 & S_2 \\
\hline
S_1 & A_1 & 0 \\
S_2 & 0 & A_2
\end{array}\right)$$

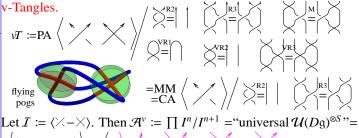

and satisfying
$$\left(|a; \ _{a}^{*} \nearrow_{b}, \ _{b} \nearrow_{a}\right) \xrightarrow{z_{0}} \left(\begin{array}{c|c} 1 & a & b \\ \hline a & 1 & 1 - T_{a}^{\pm 1} \\ b & 0 & T_{a}^{\pm 1} \end{array}\right)$$
.

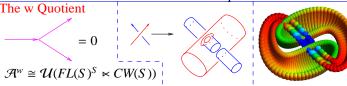

In Addition • The matrix part is just a stitching formula for Burau/Gassner [LD, KLW, CT].

- $K \mapsto \omega$ is Alexander, mod units.
- $L \mapsto (\omega, A) \mapsto \omega \det'(A I)/(1 T')$ is the MVA, mod units.
- The fastest Alexander algorithm I know.
- There are also formulas for strand deletion,
 M. Polyak & T. Ohtsuki reversal, and doubling.



- Every step along the computation is the invariant of something.
- Extends to and more naturally defined on v/w-tangles.
- Fits in one column, including propaganda & implementation.




Closed Components. The Halacheva trace tr_c satisfies $m_c^{ab} / / \operatorname{tr}_c =$ $m_c^{ba}/\!\!/ \operatorname{tr}_c$ and computes the MVA for all links in the atlas, but its domain is not understood:

Weaknesses. • m_c^{ab} and tr_c are non-linear. • The product ωA is always Laurent, but my current proof takes induction with exponentially many conditions. • I still don't understand tr_c , "unitarity", the algebra for ribbon knots. Where does it come from?

Fine print: No sources no sinks, AS vertices, internally acyclic, deg = (#vertices)/2. Likely Theorem. [EK, En] There exists a homomorphic expansion (universal finite type invariant) $Z: \nu T \to \mathcal{A}^{\nu}$. (issues suppressed) Too hard! Let's look for "meta-monoid" quotients.

