

(Compare [BNS, BN]) A The Abstract Context injections) \rightarrow (sets) (think "M(S) is quantum G^S ", for G a group)

along with natural operations $*: M(S_1) \times M(S_2) \rightarrow M(S_1 \sqcup S_2)$ whenever $S_1 \cap S_2 = \emptyset$ and $m_c^{ab} \colon M(S) \to M((S \setminus \{a, b\}) \sqcup \{c\})$ whenever $a \neq b \in S$ and $c \notin S \setminus \{a, b\}$, such that

meta-associativity:
$$m_a^{ab}/\!/m_a^{ac} = m_b^{bc}/\!/m_a^{ab}$$

meta-locality: $m_c^{ab}/\!/m_f^{de} = m_f^{de}/\!/m_c^{ab}$

and, with $\epsilon_b = M(S \hookrightarrow S \sqcup \{b\})$,

neta-unit:
$$\epsilon_b / m_a^{ab} = Id = \epsilon_b / m_a^{ba}$$
.

Claim. Pure virtual tangles *P*/*T* form a meta-monoid.

Theorem. $S \mapsto \Gamma_0(S)$ is a meta-monoid and $z_0 \colon PT \to \Gamma_0$ is a morphism of meta-monoids.

Strong Conviction. There exists an extension of Γ_0 to a bigger meta-monoid $\Gamma_{01}(S) = \Gamma_0(S) \times \Gamma_1(S)$, along with an extension of z_0 to $z_{01}: P V T \to \Gamma_{01}$, with

$$\Gamma_1(S) = V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus S^2(V)^{\otimes 2} \qquad (\text{with } V \coloneqq R_S \langle S \rangle).$$

Furthermore, upon reducing to a single variable everything is polynomial size and polynomial time.

Furthermore, Γ_{01} is given using a "meta-2-cocycle ρ_c^{ab} over Γ_0 ": In addition to $m_c^{ab} \rightarrow m_{0c}^{ab}$, there are R_S -linear m_{1c}^{ab} : $\Gamma_1(S \sqcup$ $\{a, b\}$) $\rightarrow \Gamma_1(S \sqcup \{c\})$, a meta-right-action $\alpha^{ab} \colon \Gamma_1(S) \times \Gamma_0(S) \rightarrow$ $\Gamma_1(S)$ R_S -linear in the first variable, and a first order differential operator (over R_S) ρ_c^{ab} : $\Gamma_0(S \sqcup \{a, b\}) \to \Gamma_1(S \sqcup \{c\})$ such that

$$(\zeta_0,\zeta_1)/\!\!/m_c^{ab} = \left(\zeta_0/\!\!/m_{0c}^{ab},(\zeta_1,\zeta_0)/\!\!/\alpha^{ab}/\!\!/m_{1c}^{ab} + \zeta_0/\!\!/\rho_c^{ab}\right)$$

What's done? The braid part, with still-ugly formulas.

What's missing? A lot of concept- and detail-sensitive work towards m_{1c}^{ab} , α^{ab} , and ρ_c^{ab} . The "ribbon element".

a ribbon singularity a clasp singularity A bit about ribbon knots. A "ribbon knot" is a knot that can be $S^3 = \partial B^4$ which is the boundary of a non-singular disk in B^4 .

Every ribbon knots is clearly slice, yet, Conjecture. Some slice knots are not ribbon.

Fox-Milnor. The Alexander polynomial of a ribbon knot is always of the form A(t) = f(t)f(1/t). (also for slice)

Video and more at http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-1508/