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Dror Bar-Natan: Talks: CMU-1504: Commutators
Abstract. The commutator of two elements x and y in a group
G is xyx−1y−1. That is, x followed by y followed by the inverse
of x followed by the inverse of y. In my talk I will tell you how
commutators are related to the following four riddles:
1. Can you send a secure message to a person you have never

communicated with before (neither privately nor publicly), us-
ing a messenger you do not trust?

2. Can you hang a picture on a string on the wall using n nails,
so that if you remove any one of them, the picture will fall?

3. Can you draw an n-component link (a knot made of n non-
intersecting circles) so that if you remove any one of those n
components, the remaining (n − 1) will fall apart?

4. Can you solve the quintic in radicals? Is there a formula for
the zeros of a degree 5 polynomial in terms of its coefficients,
using only the operations on a scientific calculator?

Definition. The commutator of two elements x and y in a group
G is [x, y] B xyx−1y−1.
Example 1. In S 3, [(12), (23)] = (12)(23)(12)−1(23)−1 = (123)
and in general in S ≥3,

[(i j), ( jk)] = (i jk).

Example 2. In S ≥4,
[(i jk), ( jkl)] = (i jk)( jkl)(i jk)−1( jkl)−1 = (il)( jk).

Example 3. In S ≥5,
[(i jk), (klm)] = (i jk)(klm)(i jk)−1(klm)−1 = ( jkm).

Example 4. So, in fact, in S 5, (123) =

[(412), (253)] = [[(341), (152)], [(125), (543)]] =

[[[(234), (451)], [(315), (542)]], [[(312), (245)], [(154), (423)]]] =

[ [[[(123), (354)], [(245), (531)]], [[(231), (145)], [(154), (432)]]],
[[[(431), (152)], [(124), (435)]], [[(215), (534)], [(142), (253)]]] ].

Solving the Quadratic, ax2 + bx + c = 0: δ =
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∆; ∆ = b2 − 4ac;
r = δ−b

2a .
Solving the Cubic, ax3+bx2+cx+d = 0: ∆ = 27a2d2−18abcd+
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Solving the Quartic, ax4 + bx3 + cx2 + dx + e = 0: ∆0 =

12ae − 3bd + c2; ∆1 = −72ace + 27ad2 + 27b2e − 9bcd + 2c3;
∆2 = 1

27

(
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S ;
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s − 4S − 2u; γ =

√
Γ; r = − b
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γ
2 + s.

Theorem. The is no general formula, using only the basic arithmetic operations and taking roots, for the solution of the quintic
equation ax5 + bx4 + cx3 + dx2 + ex + f = 0.
Key Point. The “persistent root” of a closed path (path lift, in topological language) may not be closed, yet the persistent root of a
commutators of closed paths is always closed.
Proof. Suppose there was a formula, and consider the corresponding “composition of machines” picture:
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Now if γ(1)
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2 , . . . , γ(1)
16 , are paths in X0 that induce permutations of the roots and we set γ(2)
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4 ], and finally γ(5) B [γ(4)

1 , γ(4)
2 ] (all of

those, commutators of “long paths”; I don’t know the word “homotopy”), then γ(5)�C�P1�R1� · · ·�R4 is a closed path. Indeed,

V.I. Arnold

• In X0, none of the paths is necessarily closed.
• After C, all of the paths are closed.
• After P1, all of the paths are still closed.
• After R1, the γ(1)’s may open up, but the γ(2)’s remain closed.
· · ·
• At the end, after R4, γ(4)’s may open up, but γ(5) remains closed.
But if the paths are chosen as in Example 4, γ(5)�C�P1�R1� · · ·�R4 is not a closed path. �

References. V.I. Arnold, 1960s, hard to locate.
V.B. Alekseev, Abel’s Theorem in Problems and Solutions, Based on the Lecture of Professor V.I. Arnold, Kluwer 2004.
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