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Finite Type Invariants of Ribbon Knotted Balloons and Hoops

scribed a certain trees-and-wheels-valued invariant ¢ of rib-
bon knotted loops and 2-spheres in 4-space, and my October 8

polynomial. Today I will explain how that same invariant
arises completely naturally within the theory of finite type
invariants of ribbon knotted loops and 2-spheres in 4-space.
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My goal is to tell you why such an invariant is expected, yet
not to derive the computable formulas.
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Exercise.
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Let Z" := (pictures with > n semi-virts) C xcbh,
‘We seek an “expansion”
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yi Corollaries. (1) Related to Lie algebras! (2) Only trees and wheels
Z(A/) = (07 s 7 77/1'7’7,—‘1-17 * K, ) X.-S. Lin persist.

Why? e Just because, and this is vastly more general.
° (leh /I"+1)* is “finite-type/polynomial invariants”.

Theorem. A is a bi-algebra.
FL(T)® x CW(T), and ¢ = log Z.

The space of its primitives is

e The Taylor example: Take K = C®(R"), T =
{f € K: f(0) =0}. Then Z™ = {f: f vanishes like |z|"} so
7" /I"*! is homogeneous polynomials of degree n and Z is a
“Taylor expansion”! (So Taylor expansions are vastly more
general than you’d think).
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 “God created the knots, all else i in
. topology is the work of mortals.”

Leopold Kronecker (modified) www.katlas. org The Kn Al N

¢ is computable! ¢ of the Borromean tangle, to degree 5:
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Video and more at http://www.math.toronto.edu/~drorbn/Talks/Geneva-131024/
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