Trees and Wheels and Balloons and Hoops

Dror Bar-Natan, Zurich, September 2013 ωεβ:=http://www.math.toronto.edu/~drorbn/Talks/Zurich-130919

15 Minutes on Algebra

Let T be a finite set of "tail labels" and H a finite set of and hoops" "head labels". Set

$$M_{1/2}(T;H) := FL(T)^H,$$

"H-labeled lists of elements of the degree-completed free Lie algebra generated by T".

$$FL(T) = \left\{ 2t_2 - \frac{1}{2}[t_1, [t_1, t_2]] + \ldots \right\} / {\text{anti-symmetry } \atop \text{Jacobi}}$$
... with the obvious bracket.

$$M_{1/2}(u,v;x,y) = \left\{ \lambda = \left(x \to \bigvee_{x}^{u} \bigvee_{y}^{v} \to \bigvee_{y}^{v} - \frac{22}{7} \bigvee_{y}^{u} \bigvee_{y}^{v} \right) \dots \right\}$$

Tail Multiply tm_w^{uv} is $\lambda \mapsto \lambda /\!\!/ (u, v \to w)$, satisfies "meta-associativity", $tm_u^{uv} /\!\!/ tm_u^{uw} = tm_v^{vw} /\!\!/ tm_u^{uv}$.

Head Multiply hm_z^{xy} is $\lambda \mapsto (\lambda \setminus \{x,y\}) \cup (z \to bch(\lambda_x,\lambda_y))$, satisfies R123, VR123, D, and $_{
m where}$

$$bch(\alpha,\beta) := \log(e^{\alpha}e^{\beta}) = \alpha + \beta + \frac{[\alpha,\beta]}{2} + \frac{[\alpha,[\alpha,\beta]] + [[\alpha,\beta],\beta]}{12} + \dots$$

satisfies $\operatorname{bch}(\operatorname{bch}(\alpha,\beta),\gamma) = \log(e^{\alpha}e^{\beta}e^{\gamma}) = \operatorname{bch}(\alpha,\operatorname{bch}(\beta,\gamma)) \bullet \delta$ injects u-knots into \mathcal{K}^{bh} (likely u-tangles too). and hence meta-associativity, $hm_x^{xy} /\!\!/ hm_x^{xz} = hm_y^{yz} /\!\!/ hm_x^{xy}$. \bullet δ maps v-tangles to \mathcal{K}^{bh} ; the kernel contains the above and

Tail by Head Action tha^{ux} is $\lambda \mapsto \lambda /\!\!/ RC_u^{\lambda_x}$, where conjecturally (Satoh), that's all. $C_u^{-\gamma} \colon FL \to FL$ is the substitution $u \to e^{-\gamma}ue^{\gamma}$, or more conjecturally (Satoh), that's all. precisely,

$$C_u^{-\gamma} \colon u \to e^{-\operatorname{ad}\gamma}(u) = u - [\gamma, u] + \frac{1}{2}[\gamma, [\gamma, u]] - \dots,$$

and $RC_u^{\gamma} = (C_u^{-\gamma})^{-1}$. Then $C_u^{\text{bch}(\alpha,\beta)} = C_u^{\alpha/\!\!/RC_u^{-\beta}} /\!\!/ C_u^{\beta}$ hence is a group, $\pi_2(X)$ $RC_u^{\text{bch}(\alpha,\beta)} = RC_u^{\alpha} /\!\!/ RC_u^{\beta/\!\!/RC_u^{\alpha}}$ hence "meta $u^{xy} = (u^x)^y$ ", and π_1 acts on π_2

 $hm_z^{xy} /\!\!/ tha^{uz} = tha^{ux} /\!\!/ tha^{uy} /\!\!/ hm_z^{xy},$

and $tm_w^{uv} /\!\!/ C_w^{\gamma /\!\!/ tm_w^{uv}} = C_u^{\gamma /\!\!/ RC_v^{-\gamma}} /\!\!/ C_v^{\gamma} /\!\!/ tm_w^{uv}$ and hence "metastudy $\pi_1(X) = [S^1, X]$ and $\pi_2(X) = [S^2, X]$.

Wheels. Let $M(T;H) := M_{1/2}(T;H) \times CW(T)$, where Why not $\pi_T(X) := M_{1/2}(T;H) \times CW(T)$ CW(T) is the (completed graded) vector space of cyclic words [T, X]? on T, or equaly well, on FL(T):

Operations. On M(T; H), define tm_w^{uv} and hm_z^{xy} as before, \bullet Associativities: $m_a^{ab} /\!\!/ m_a^{ac} = m_b^{bc} /\!\!/ m_a^{ab}$, for m = tm, hm. \bullet " $(uv)^x = u^x v^x$ ": $tm_w^{uv} /\!\!/ tha^{ux} = tha^{ux} /\!\!/ tha^{vx} /\!\!/ tm_w^{uv}$, \bullet " $u^{(xy)} = (u^x)^y$ ": $hm_z^{xy} /\!\!/ tha^{uz} = tha^{ux} /\!\!/ tha^{uy} /\!\!/ hm_z^{yv}$.

$$(\lambda; \omega) \mapsto (\lambda, \omega + J_u(\lambda_x)) /\!\!/ RC_u^{\lambda_x},$$

where $J_u(\gamma) := \int_0^1 ds \operatorname{div}_u(\gamma /\!\!/ RC_u^{s\gamma}) /\!\!/ C_u^{-s\gamma}$, and

Theorem Blue. All blue identities still hold.

Merge Operation. $(\lambda_1; \omega_1) * (\lambda_2; \omega_2) := (\lambda_1 \cup \lambda_2; \omega_1 + \omega_2)$

$\mathcal{K}^{bh}(T;H)$.

"Ribbonknotted balloons

Connected Punctures & Cuts Sums.

If \bar{X} is a space, $\pi_1(\bar{X})$ \bar{K} : and π_1 acts on π_2 .

Riddle. People often and $\pi_2(X) = [S^2, X].$

"Meta-Group-Action" Properties.

- Cangle concatenations $\rightarrow \pi_1 \ltimes \pi_2$. With $dm_c^{ab} := tha^{ab}$ //

 $tm_c^{ab} /\!\!/ hm_c^{ab}$,

inite type invariants make sense in the usual way, and

