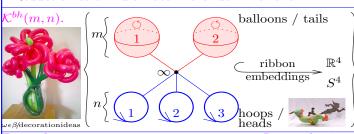
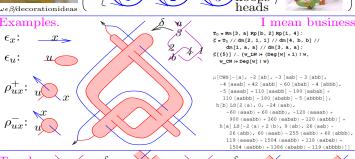
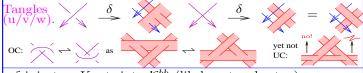
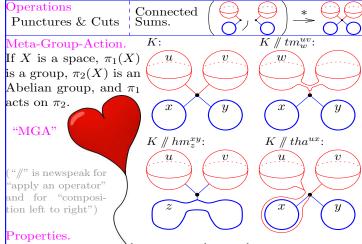
Balloons and Hoops and their Universal Finite-Type Invariant,


BF Theory, and an Ultimate Alexander Invariant


Dror Bar–Natan in Oxford, January 2013



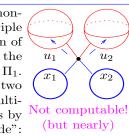
Scheme. \bullet Balloons and hoops in \mathbb{R}^4 , algebraic structure and Meta-associativity relations with 3D.


- An ansatz for a "homomorphic" invariant: computable. related to finite-type and to BF.
- Reduction to an "ultimate Alexander invariant".



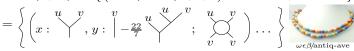
- δ injects u-Knots into \mathcal{K}^{bh} (likely u-tangles too).
- demeister moves and the "overcrossings commute" relation, Let $M(T,H) := \{(\bar{\lambda} = (x : \lambda_x)_{x \in H}; \omega) : \lambda_x \in FL, \omega \in CW\}$ and conjecturally, that's all. Allowing punctures and cuts, δ is onto.

- Associativities: $m_a^{ab} /\!\!/ m_a^{ac} = m_b^{bc} /\!\!/ m_a^{ab}$, for m = tm, hm.
- Action axiom t: $tm_w^{uv} /\!\!/ tha^{wx} = tha^{ux} /\!\!/ tha^{vx} /\!\!/ tm_w^{uv}$, Action axiom h: $hm_z^{xy} /\!\!/ tha^{uz} = tha^{ux} /\!\!/ tha^{uy} /\!\!/ hm_z^{xy}$.
- SD Product: $dm_c^{ab} := tha^{ab} // tm_c^{ab} // hm_c^{ab}$ is associative.


 $\omega \epsilon \beta := \text{http://www.math.toronto.edu/~drorbn/Talks/Oxford-130121}$

Fangle concatenations $\rightarrow \pi_1 \ltimes$ δ_{V} $\delta_{\rm V}$ dm_c^{ab}

Thus we seek homomorphic invariants of \mathcal{K}^{bh} !


nvariant #0. With Π_1 denoting "honest π_1 ", map $\gamma \in \mathcal{K}^{bh}(m,n)$ to the triple $(\Pi_1(\gamma^c), (u_i), (x_j)),$ where the meridian of the balls u_i normally generate Π_1 , and the "longtitudes" x_i are some elements of Π_1 . * acts like *, tm acts by "merging" two meridians/generators, hm acts by multiplying two longtitudes, and tha^{ux} acts by "conjugating a meridian by a longtitude":

 $(\Pi, (u, \ldots), (x, \ldots)) \mapsto (\Pi * \langle \bar{u} \rangle / (u = x \bar{u} x^{-1}), (\bar{u}, \ldots), (x, \ldots))$ Failure #0. Can we write the x's as free words in the u's? If x = uv, compute $x /\!\!/ tha^{ux}$:

$$x = uv \rightarrow \bar{u}v = u^x v = u^{\bar{u}v} v = u^{u^x v} v = u^{u^{u^x v}} v = \cdots$$

The Meta-Group-Action M. Let T be a set of "tail labels" ("balloon colours"), and H a set of "head labels" ("hoop colours"). Let FL = FL(T) and FA = FA(T) be the (completed graded) free Lie and free associative algebras on generators T and let CW = CW(T) be the (completed graded) δ maps v/w-tangles map to \mathcal{K}^{bh} ; the kernel contains Rei-vector space of cyclic words on T, so there's tr: $FA \to CW$.

Operations. Set $(\bar{\lambda}_1; \omega_1) * (\bar{\lambda}_2; \omega_2) := (\bar{\lambda}_1 \cup \bar{\lambda}_2; \omega_1 + \omega_2)$ and with $\mu = (\bar{\lambda}; \omega)$ define

$$tm_{w}^{uv}: \mu \mapsto \mu /\!\!/ (u, v \mapsto w),$$

$$hm_{z}^{xy}: \mu \mapsto \left(\left(\dots, \widehat{x}: \widehat{\lambda_{x}}, \widehat{y}: \widehat{\lambda_{y}}, \dots, z: \operatorname{bch}(\lambda_{x}, \lambda_{y})\right); \omega\right)$$

$$tha^{ux}: \mu \mapsto \underbrace{\mu /\!\!/ /\!\!/ (u \mapsto e^{\operatorname{ad} \lambda_{x}}(\bar{u})) /\!\!/ (\bar{u} \mapsto u)}_{\mu /\!\!/ CC_{u}^{\lambda_{x}}} + \underbrace{(0; J_{u}(\lambda_{x}))}_{\operatorname{the "J-spice"}}$$

A
$$CC_u^{\lambda}$$
 example.
$$\left(\begin{array}{c} u \\ \mu \end{array}, \begin{array}{c} u \\ \lambda \end{array}\right) \begin{array}{c} U \\ CC_u^{\lambda} \end{array}$$