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Why Bother?

The Philosophy Corner

Abstract. I will tell the
Kauffman bracket story of
the Jones polynomial as
Kauffman told it in 1987,
then the Khovanov homol-
ogy story as Khovanov told
it in 1999, and finally the
“local Khovanov homology”
story as I understood it in
2003. At the end of our 90
minutes we will understand
what is a “Jones homology”,
how to generalize it to tan-
gles and to cobordisms be-
tween tangles, and why it
is computable relatively effi-
ciently. But we will say noth-
ing about more modern stuff
— the Rasmussen invariant,
Alexander and HOMFLYPT
knot homologies, and the cat-
egorification of sl2 and other
Lie algebras.

Khovanov: K(L) is a chain complex of graded Z-modules;
V = span〈v+, v−〉; deg v± = ±1; qdim V = q + q−1;

K(©k) = V ⊗k; K(!) = Flatten

(
0 → K(H){1}

height 0

→ K(1){2}
height 1

→ 0

)
;

K(") = Flatten

(
0 → K(1){−2}

height −1

→ K(H){−1}
height 0

→ 0

)
;

( )
−→

(
V ⊗ V

m→ V
)

m :

{
v+ ⊗ v− 7→ v− v+ ⊗ v+ 7→ v+

v− ⊗ v+ 7→ v− v− ⊗ v− 7→ 0

( )
−→

(
V

∆→ V ⊗ V
)

∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v−

Example: = q + q3 + q5 − q9.
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i<j ξi if ξj = ⋆) = K(&).
Theorem 1. The graded Euler characteristic of K(L) is J(L).
Theorem 2. The homology Kh(L) of K(L) is a link invariant.
Theorem 3. Kh(L) is strictly stronger than J(L): J(5̄1) = J(10132) yet Kh(5̄1) 6= Kh(10132).
References. Khovanov’s arXiv:math.QA/9908171 and arXiv:math.QA/0103190 and my

http://www.math.toronto.edu/~drorbn/papers/Categorification/.

What is Categorification=Concretization=de-
abstraction? “3” is {cow, cow, cow} and
{pig, pig, pig} and many other things. . .

. . . categorification is choosing which 3 it is!

N. Natural numbers 7→ finite sets, equalities 7→ bi-
jections, inequalities 7→ injections and surjections:(

2n

n

)
=
∑(

n

k

)2

7→
(

X × {1, 2}
|X |

)
↔
⋃(

X

k

)
×
(

X

k

)
.

Z. Negative numbers:

“have”
X0

Weaker Categorification. Do the same in the category of
vector spaces: “3” becomes V s.t. dim V = 3, or bet-
ter, V • = (· · · V r−1 → V r → V r+1 · · · ) s.t. d2 = 0 and

χ(V •) :=
∑

(−1)r dimV r = 3 =
∑

(−1)r dimHr.
Equalities become homotopies between complexes.

Categorifying Z[q±1]. f =
∑

ajq
j be-

comes V =
⊕

Vj s.t. qdimV :=∑
qj dimVj = f , or better,

V • = (· · · V r−1 → V r → V r+1 · · · )
s.t. d2 = 0, deg d = 0, and
χq(V

•) :=
∑

(−1)r qdim V r = f =∑
(−1)r qdim Hr.

Note. Setting
V {l}j := Vj−l, we
get qdim V {l} =
ql qdimV .

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Hamburg-1208/
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