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ILet K be a unital algebra over a field F with char F = 0, and
so K/I —— T,

Definition. Say that K is quadratic if its associated graded
or K = ©,2, 17/ IP*1 is a quadratic algebra. Alternatively,
let A = q(K) = (V = 1/I*)/(Ry = ker(fip : VRV —
12/1%)) be the “quadratic approximation” to K (g is a lovely
functor). Then K is quadratic iff the obvious p: A — gr K
is an isomorphism. If G is a group, we say it is quadratic if

let I C K be an “augmentation ideal”;

Why Care?
e In abstract generality, gr K is a simplified version of K and
if it is quadratic it is as simple as it may be without being
silly. e In some concrete (somewhat generalized) knot theo-
retic cases, A is a space of “universal Lie algebraic formulas”
and the “primary approach” for proving (strong) quadratic-
ity, constructing an appropriate homomorphism 7 : K — A
becomes wonderful mathematics:
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im pP / im P!, Hence we ask:
e What’s I'P/pu(I'PT1)?
Lemma. I'P/p(IPH1) ~ ([/]2)®p = V®P, set 7

e How injective is this tower?
[P s /%P,

A R T L u-Knots and
its group ring is, with its augmentation ideal. K| Braids v-Knots w-Knots
The Overall Strategy. Consider the “singularity tower” of Metrized  Lie TFinite dimensional Lie
(K, I) (here “” means ®k and p is (always) multiplication): | A| algebras [BN1] |Lie bialgebras [Hav] |algebras [BN3]
Etingof-Kazhdan Kashiwara-Vergne-
Lopprl Bty opp He oopped K Associators quantization Alekseev-Torossian
Z| [Dri, BND]  |[EK, BN2] [KV, AT]
We care as im(uP? = pj 0 ---op,) = IP, so IP/IPH =

2-Injectivity. A (one-sided infinite) sequence

é, é.
C— Kpp — ? Ky=K
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IFlow Chart.

IProposition 1. The sequence
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by Peter is injective; i.e. if for all p, ker(d, o 6p11) = kerdp11. A paiy
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“injective” if for all p > 0, kerd, = 0. It is “2-injective”
“l-reduction”

(K, TI) is “2-injective” if its singularity tower is 2-injective.

@P 1 ([J L.y, . [Pi— 1) O , pp _#» , pp—1 Proposition 2. If (K,I) is 2-local and 2-injective, it is
o ] ., quadratic.
is exact, where Ry :=ker p: I'* — I; so (K,I) is “2-local”. |pyoof. Staring at  the l-reduced sequencd
The Free Case. If J is an augmentation ideal in K = F =| p»+: Bt Ir o K, get 4o o
(), define ¢ : F' — F by x; — x; + €(x;). Then Jy := ¢(J) kcr*ﬁr/lkew ker 1y o I:p7 Ip2+1®
is {w € F :degw > 0}. For Jy it is easy to check that Ry =[u(T7+1/ker ppr) p(TP ) ker i, ° But (77T ~ (I/1%)*P, so
MR, = 0, and hence the same is true for every J. the above is (I/I1%)¥P /3" (I''71: Ry : IP79~1) . But that’

the degree p piece of g(K).

The General Case. If K = F/(M) (where M is a vector space
of “moves”) and I C K, then I = J/(M) where J C F. Then
P = JP /5 JI7L:(M): JP7J and we have

1222

The X Lemma (inspired by [Hut]).

for x € K and r € Ry), and hence

&%

6o 0 2

JP o Jp—l \ B / =
onto l Tp Tp—1 lonto V % zf

. . . . A g
1P =J?r Jo(M)y:J —Es pp-t = gt J(M):J = ’

) /2 <71> . /Z < > If the above diagram is Conway (X) exact, then its two
So” ker(u) =, (MF (kerﬂ—p—l)) =Tp (Z PE (J':<M>:J')) =diagonals have the same “2-injectivity defect”. That is|
Sy (Jipp (M) J) =3 IR I = §;}mpj. if A - B — Cp and Ay — B — () are exact, then
Mo is simpler than may seem! It’s J2 L ]\4ker(61 Okg?gé}je)r @o N: ker(fo o al?/ker al-
an “augmentation bimodule” (IR = - l Proof. —eray a—0> ker 81 N im g

= Mol thus zr = e(x)r = re(x) = ro l 2 ! — ker By N im ay ; ker;((eﬁroaolal)

12 ——1=J/(M)

MRy = 7T2(/J,;‘1M).
PR, is simpler than may seem! In 3R, ; = I3 Ry [PI-
the I factors may be replaced by V = I/I%. Hence

p—1
R, ~ P VI @ my(up' M) @ VEPITL

,[The singularity tower of (K,I) is

The Hutchings Criterion [Hut]. N, -1
7] Hp
\I:p/

P‘V X

B V®pr

2-injective iff on the right, ker(wo
0) = ker(0). That is, iff every
“diagrammatic syzygy” is also a
“topological syzygy”.

j=1
Claim. w(R, ;) = R, ;; namely,

7 (I Ry TP ) = VO g Ry @ VEPIL,

Conclusion. We need to know that (K, I) is
“syzygy complete” — that every diagrammatic syzygy|
is also a topological syzyey, that ker(mw o 9) = ker(9).

More at http://www.math.toronto.
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