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2-Injectivity. A (one-sided infinite) sequence

· · · −−−−→ Kp+1
δp+1−−−−→ Kp

δp−−−−→ · · · −−−−→ K0 = K

is “injective” if for all p > 0, ker δp = 0. It is “2-injective” if
its “1-reduction”

· · · −−−−→ Kp+1

ker δp+1

δ̄p+1−−−−→ Kp

ker δp

δ̄p−−−−→ Kp−1

ker δp−1
−−−−→ · · ·

is injective; i.e. if for all p, ker(δp ◦ δp+1) = ker δp+1. A pair
(K, I) is “2-injective” if its singularity tower is 2-injective.

The X Lemma (inspired by [Hut]).
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If the above diagram is Conway (1) exact, then its two
diagonals have the same “2-injectivity defect”. That is,
if A0 → B → C0 and A1 → B → C1 are exact, then
ker(β1 ◦ α0)/ kerα0 ≃ ker(β0 ◦ α1)/ kerα1.

Proof.
ker(β1◦α0)

ker α0

∼−−−−→
α0

ker β1 ∩ imα0

= kerβ0 ∩ imα1
∼←−−−−
α1

ker(β0◦α1)
ker α1
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Let K be a unital algebra over a field F with char F = 0, and

let I ⊂ K be an “augmentation ideal”; so K/I
∼−−−−→
ǫ

F.

Definition. Say that K is quadratic if its associated graded
grK =

⊕∞
p=0 I

p/Ip+1 is a quadratic algebra. Alternatively,

let A = q(K) = 〈V = I/I2〉/〈R2 = ker(µ̄2 : V ⊗ V →
I2/I3)〉 be the “quadratic approximation” to K (q is a lovely
functor). Then K is quadratic iff the obvious µ : A → grK
is an isomorphism. If G is a group, we say it is quadratic if
its group ring is, with its augmentation ideal.

Why Care?
• In abstract generality, grK is a simplified version of K and
if it is quadratic it is as simple as it may be without being
silly. • In some concrete (somewhat generalized) knot theo-
retic cases, A is a space of “universal Lie algebraic formulas”
and the “primary approach” for proving (strong) quadratic-
ity, constructing an appropriate homomorphism Z : K → Â,
becomes wonderful mathematics:
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The Overall Strategy. Consider the “singularity tower” of
(K, I) (here “:” means ⊗K and µ is (always) multiplication):

· · · I :p+1 µp+1−−−−→ I :p µp−−−−→ I :p−1 −−−−→ · · · −−−−→ K

We care as im(µp = µ1 ◦ · · · ◦ µp) = Ip, so Ip/Ip+1 =
imµp/ imµp+1. Hence we ask:

• What’s I :p/µ(I :p+1)? • How injective is this tower?

Lemma. I :p/µ(I :p+1) ≃ (I/I2)⊗p = V ⊗p; set π : I :p → V ⊗p.

The Pure Virtual Braid Group is Quadratic1

Abstract Generalities

Conclusion. We need to know that (K, I) is
“syzygy complete” — that every diagrammatic syzygy
is also a topological syzygy, that ker(π ◦ ∂) = ker(∂).

The Hutchings Criterion [Hut].
The singularity tower of (K, I) is
2-injective iff on the right, ker(π ◦
∂) = ker(∂). That is, iff every
“diagrammatic syzygy” is also a
“topological syzygy”.
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∂
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V ⊗p

Proposition 2. If (K, I) is 2-local and 2-injective, it is
quadratic.
Proof. Staring at the 1-reduced sequence

I :p+1

ker µp+1

µp+1−−−−→ I :p

ker µp

µp−−−−→ · · · −−−−→ K, get Ip

Ip+1 ≃
I :p/ ker µp

µ(I :p+1/ ker µp+1)
≃ I :p

µ(I :p+1)+ker µp
. But I :p

µ(I :p+1) ≃ (I/I2)⊗p, so

the above is (I/I2)⊗p
/∑(

I :j−1 : R2 : I :p−j−1
)
. But that’s

the degree p piece of q(K).

Proposition 1. The sequence

Rp :=
⊕p−1

j=1

(
I :j−1 : R2 : I :p−j−1

) ∂−−−−→ I :p µp−−−−→ I :p−1

is exact, where R2 := kerµ : I :2 → I; so (K, I) is “2-local”.
The Free Case. If J is an augmentation ideal in K = F =
〈xi〉, define ψ : F → F by xi 7→ xi + ǫ(xi). Then J0 := ψ(J)
is {w ∈ F : degw > 0}. For J0 it is easy to check that R2 =
Rp = 0, and hence the same is true for every J .
The General Case. If K = F/〈M〉 (where M is a vector space
of “moves”) and I ⊂ K, then I = J/〈M〉 where J ⊂ F . Then
I :p = J :p

/∑
J :j−1 :〈M〉 :J :p−j and we have

J :p
µF

1-1
//

πponto
��

J :p−1

πp−1 onto
��

I :p = J :p /
∑
J : :〈M〉 :J : µ

// I :p−1 = J :p−1 /
∑
J : :〈M〉 :J :

So2 ker(µ) = πp

(
µ−1

F (ker πp−1)
)
= πp

(∑
µ−1

F (J : :〈M〉 :J :)
)
=∑

πp

(
J : :µ−1

F 〈M〉 :J :
)
=

∑
I : :R2 :I : =:

∑p−1
j=1 Rp,j.

Flow Chart.

R2 is simpler than may seem! It’s
an “augmentation bimodule” (IR2 =
0 = R2I thus xr = ǫ(x)r = rǫ(x) = rx
for x ∈ K and r ∈ R2), and hence
R2 = π2(µ

−1
F M).

J :2
µF

1-1
//

π2

��

J ⊃M
π1

��

I :2
µ

// I = J/〈M〉

Rp is simpler than may seem! In Rp,j = I :j−1 : R2 : I :p−j−1

the I factors may be replaced by V = I/I2. Hence

Rp ≃
p−1⊕

j=1

V ⊕j−1 ⊗ π2(µ
−1
F M)⊗ V ⊗p−j−1.

Claim. π(Rp,j) = Rp,j; namely,

π
(
I :j−1 : R2 : I :p−j−1

)
= V ⊗j−1 ⊗R2 ⊗ V ⊗p−j−1.
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