Facts and Dreams About v–Knots and Etingof–Kazhdan, 1

Dror Bar-Natan at Swiss Knots 2011

http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/ Foots & refs on PDF version, page 3

This is an overview with too many and not enough details. I apologize.

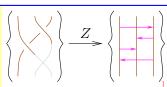
Abstract. I will describe, to the best of my understanding, the Example 1. relationship between virtual knots and the Etingof-Kazhdan [EK] quantization of Lie bialgebras, and explain why, IMHO, both topologists and algebraists should care. I am not happy yet about the state of my understanding of the subject but I haven't lost hope of achieving happiness, one day.

Abstract Generalities. (K, I): an algebra and an "augmentation ideal" in it. $\hat{K} := \lim K/I^m$ the "I-adic completion". $\operatorname{gr}_I K := \widehat{\bigoplus} I^m / I^{m+1}$ has a product μ , especially, μ_{11} : $(C = I/I^2)^{\otimes 2} \rightarrow$ I^2/I^3 . The "quadratic approximation" $\mathcal{A}_I(K) :=$ $\widehat{FC}/\langle \ker \mu_{11} \rangle$ of K surjects using μ on gr K.

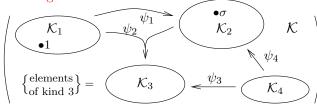
The Prized Object. A "homomorphic A-expansion": a homomorphic filterred $Z: K \to \mathcal{A}$ for which $\operatorname{gr} Z: \operatorname{gr} K \to \mathcal{A} Z$: universal finite type invariant, the Kontsevich integral. inverts μ .

especially those around quantum groups, arise this way.

Example 2. For $K = \mathbb{Q}PvB_n =$ "braids when you look", [Lee] shows that a non-homomorphic Z exists. [BEER]: there is no homomorphic one.



General Algebraic Structures¹.



- Has kinds, elements, operations, and maybe constants. still
- Must have "the free structure over some generators".
- We always allow formal linear combinations. works!

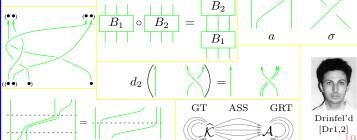
Example 3. Quandle: a set K with an op \wedge s.t.

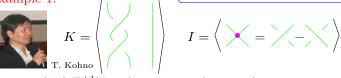
$$1 \wedge x = 1, \quad x \wedge 1 = x = x \wedge x, \quad \text{(appetizers)}$$
$$(x \wedge y) \wedge z = (x \wedge z) \wedge (y \wedge z). \quad \text{(main)}$$

 $(x \wedge y) \wedge z = (x \wedge z) \wedge (y \wedge z)$. (main) $\mathcal{A}(K)$ is a graded Leibniz² algebra: Roughly, set $\bar{v} := (v-1)$ above relation becomes equiva-(these generate I!), feed $1 + \bar{x}$, $1 + \bar{y}$, $1 + \bar{z}$ in (main), collect the surviving terms of lowest degree:

$$(\bar{x} \wedge \bar{y}) \wedge \bar{z} = (\bar{x} \wedge \bar{z}) \wedge \bar{y} + \bar{x} \wedge (\bar{y} \wedge \bar{z}).$$

Example 4. Parenthesized braids make a category with some extra operations. An expansion is the same thing as an A_n associator, and the Grothendieck-Teichmüller story³ arises satisfying the "pentagon", naturally.





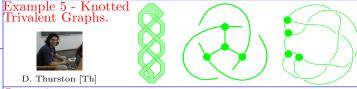
 $(K/I^{m+1})^* = (\text{invariants of type } m) =: \mathcal{V}_m$

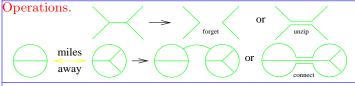
$$(I^m/I^{m+1})^* = \mathcal{V}_m/\mathcal{V}_{m-1} \quad C = \langle t^{ij} | t^{ij} = t^{ji} \rangle = \langle | \mid \downarrow \downarrow \rangle$$

$$\ker \mu_{11} = \langle [t^{ij}, t^{kl}] = 0 = [t^{ij}, t^{ik} + t^{jk}] \rangle = \langle 4T \text{ relations} \rangle$$

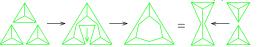
$$\mathcal{A} = A_n = \begin{pmatrix} \text{horizontal chord dia-} \\ \text{grams mod 4T} \end{pmatrix} = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} 4 \text{T}$$

Why Prized? Sizes K and shows it "as big" as A; reduces Dror's Dream. All interesting graded objects and equations, "topological" questions to quadratic algebra questions; gives ⁶ life and meaning to questions in graded algebra; universalizes those more than "universal enveloping algebras" and allows for richer quotients.





Presentation. KTG is generated by ribbon twists and the tetrahedron \triangle , modulo the relation(s):



With $\Phi := Z(\triangle)$, the lent to the Drinfel'd's pentagon of the theory of quasi-Hopf algebras. 15 A $\mathcal{U}(\mathfrak{g})$ -Associator:

$$:= \Phi \in \mathcal{A}(\uparrow_3)$$

$$((AB)C)D \longrightarrow (AB)(CD)$$

 $(AB)C \xrightarrow{\Phi \in \mathcal{U}(\mathfrak{g})^{\otimes 3}} A(BC)$

(A(BC))DA(B(CD)) $(1\Delta 1)\Phi$ A((BC)D)

 $\Phi 1 \cdot (1\Delta 1) \Phi \cdot 1 \Phi = (\Delta 11) \Phi \cdot (11\Delta) \Phi$

