
Footnotes
1. I probably mean “a functor from some fixed “structure multi-category” to the multi-category of sets, extended to formal

linear combinations”.

2. A Leibniz algbera is a Lie algebra minus the anti-symmetry of the bracket; I have previously erroneously asserted that
here A(K) is Lie; however see the comment by Conant attached to this talk’s video page.

3. See my paper [BN1] and my talk/handout/video [BN3].

4. See [BN5] and my talk/handout/video [BN4].

5. Not so old and not quite written up. Yet see [BN2].
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Plan
1. (8 minutes) The Peter Lee setup for (K, I), “all interesting graded equations arise in this way”.

2. (3 minutes) Example: the pure braid group (mention PvB, too).

3. (3 minutes) Generalized algebraic structures.

4. (1 minute) Example: quandles.

5. (4 minutes) Example: parenthesized braids and horizontal associators.

6. (6 minutes) Example: KTGs and non-horizontal associators. (“Bracket rise” arises here).

7. (8 minutes) Example: wKO’s and the Kashiwara-Vergne equations.

8. (12 minutes) vKO’s, bi-algebras, E-K, what would it mean to find an expansion, why I care (stronger invariant, more
interesting quotients).

9. (5 minutes) wKO’s, uKO’s, and Alekseev-Enriquez-Torossian.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/
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