From the ax + b Lie Algebra to the Alexander Polynomial and Beyond

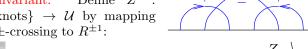
Dror Bar-Natan, Chicago, September 2010

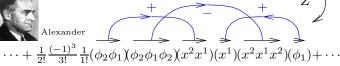
http://www.math.toronto.edu/~drorbn/Talks/Chicago-1009/

Abstract. I will present the simplest-ever "quantum" formula for the Alexander polynomial, using only the unique two dimensional non-commutative Lie algebra (the one associated with the "ax + b" Lie group). After introducing the "Euler of arrow j, and let $s_j \in \pm 1$ be technique" and some diagrammatic calculus I will sketch the proof of the said formula, and following that, I will present a long list of extensions, generalizations, and dreams.

The 2D Lie Algebra. Let $\mathfrak{g} = \mathfrak{lie}(x^1, x^2)/[x^1, x^2] = x^2$, let $\mathfrak{g}^* = \langle \phi_1, \phi_2 \rangle$ with $\phi_i(x^j) = \delta_i^j$, let $I\mathfrak{g} = \mathfrak{g}^* \rtimes \mathfrak{g}$ so $[\phi_i, \phi_j] = [\phi_1, x^i] = 0$ while $[x^1, \phi_2] = -\phi_2$ and $[x^2, \phi_2] = \phi_1$. Let $r = Id = \phi_1 \otimes x^1 + \phi_2 \otimes x^2 \in \mathfrak{g}^* \otimes \mathfrak{g} \subset I\mathfrak{g} \otimes I\mathfrak{g}$. Let $\mathcal{U} = \{\text{words in } I\mathfrak{g}\}/ab - ba = [a,b]$, degree-completed An Euler Interlude. If you know brackets, how do you test with respect to $\deg \phi_i = 1$ and $\deg x^i = 0$ (so \mathcal{U} (power series is 4 variables)). Let $R = \exp(r) \in \mathcal{U} \otimes \mathcal{U}$.

The Invariant. Define Z: $\{\text{long knots}\} \rightarrow \mathcal{U} \text{ by mapping}$ every \pm -crossing to $R^{\pm 1}$:

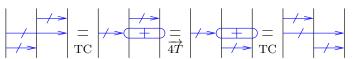




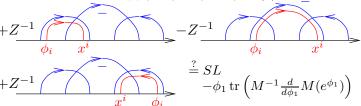
Near Theorem. Z is invariant, and it is essentially the Alexander polynomial; with $N = \exp(\overline{l} \phi_i x^i + \overline{l} x^i \phi_i) =: \exp(SL)$,

$$Z(K) = N \cdot \left(A(K)(e^{\phi_1}) \right)^{-1} \tag{1}$$

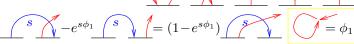
Invariance. "The identity is an invariant tensor":



The Euler Prelude. Apply $\tilde{E}\zeta := \zeta^{-1}E\zeta$ to (1):



Some Relations. $\phi_i x^i, x^i \phi_i, \phi_1$ are central, $x^i \phi_i - \phi_i x^i = \phi_1$ $[x^j,\phi_i]=\delta_i^j\phi_1-\delta_1^j\phi_i$ or SO



and the famed "tails commute" (TC):

Near Proof. Let $\lambda_{\alpha i}$ be a red arrow with tail at a_{α} and head just left of h_i . Let $\Lambda = (\lambda_{\alpha i})$. Then roughly $R\Lambda = \phi_1 I$ so roughly,

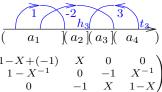


 $\Lambda = R^{-1}\phi_1$. The rest is book-keeping that I haven't finished yet, yet with which my computer agrees fully.

I don't understand the Alexander polynomial!

"God created the knots, all else in topology is the work of mortals.' Leopold Kronecker (modified)

Alexander Reminder. Number the arrows $1, \ldots, n$, let t_i, h_i be the tail and head its sign. Cut the skeleton into $arcs a_{\alpha}$ by arrow heads, and



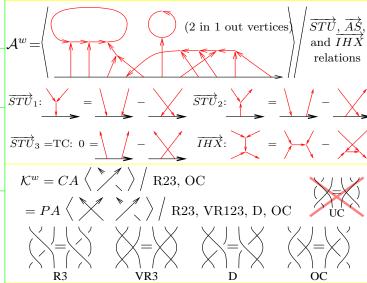
let $\alpha(p)$ be "the arc of point p". Let $R \in M_{n \times (n+1)}$ be the matrix whose j'th row has -1 in column $\alpha(h_j)$ and $1 - X^{s_j}$ in column $\alpha(t_j)$ and X^{s_j} in column $\alpha(h_j) + 1$, and let M be R with a column removed. Then $A(X) = \det(M)$.

 \equiv exponentials? When's $e^A e^B = e^C e^D$?

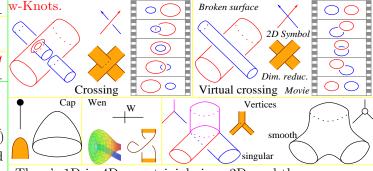
Bad Idea. Take log and use BCH. You'll want to cry.

Clever Idea. Let E be the Euler derivation, which multiplies each element by its degree (e.g. on $\mathbb{Q}[\![\phi]\!]$, Ef = $\phi \partial_{\phi} f$, so $E e^{\phi} = \phi e^{\phi}$). Apply $\tilde{E} \zeta := \zeta^{-1} E \zeta$: $\tilde{E}(e^A e^B) = e^{-B} e^{-A} \left(e^A A e^B + e^A e^B B \right) = e^{-B} A e^B + B = e^{-\operatorname{ad} B} (A) + B$.

'Uninterpreting" Diagrams. Make $Z^w: \mathcal{K}^w \to \mathcal{A}^w \to \mathcal{U}$, with



 Z^w is a UFTI on w-knots! It extends to links and tangles, is well behaved under compositions and cables, and remains computable for tangles. It contains Burau, Gassner, and Cimasoni-Turaev in natural ways, and it contains the MVA though my understanding of the latter is incomplete.



There's 1D in 4D, non-trivial given 2D, and there are ops...

Dream. Z^w extends to virtual knots as $Z^v: \mathcal{K}^v \to \mathcal{A}^v$, with good composition and cabling properties and plenty of computable quotients, more then there are quantum groups and www.katlas.org The knot files representations thereof. I don't understand quantum groups!