
"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
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The w−generators.
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Dror Bar−Natan, Montpellier, June 2010, http://www.math.toronto.edu/~drorbn/Talks/Montpellier−1006/

I understand Drinfel’d and Alekseev−Torossian, I don’t understand
Etingof−Kazhdan yet, and I’m clueless about Kontsevich

Also see http://www.math.toronto.edu/~drorbn/papers/WKO/
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"An Algebraic Structure"
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Just for fun.
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A Ribbon 2-Knot is a surface S embedded in R4 that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D1 in the interior of B and
a disk D2 with D2 ∩ ∂B = ∂D2, modulo isotopies of S alone.
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The w-relations include R234, VR1234, D, Overcrossings
Commute (OC) but not UC:

no!

1. proj Kw(↑n) ∼=j U ((an ⊕ tdern) ⋉ trn)
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• Feed knot-things, get Lie algebra things.
• (u-knots)→(Drinfel’d associators).
• (w-knots)→(K-V-A-E-T).
• Dream: (v-knots)→(Etingof-Kazhdan).
• Clueless: (???)→(Kontsevich)?
• Goals: add to the Knot Atlas, produce a work-
ing AKT and touch ribbon 1-knots, rip benefits
from truly understanding quantum groups.
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Circuit Algebras

A J-K Flip Flop

Homomorphic expansions for a filtered algebraic structure K:

opsUK = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ . . .
⇓ ↓Z

opsU grK := K0/K1 ⊕ K1/K2 ⊕ K2/K3 ⊕ K3/K4 ⊕ . . .

An expansion is a filtered Z : K → grK that “covers” the
identity on grK. A homomorphic expansion is an expansion
that respects all relevant “extra” operations.
Reality. grK is often too hard. An A-expansion is a graded
“guess” A with a surjection τ : A → grK and a filtered Z :
K → A for which (grZ)◦τ = IA. An A-expansion confirms A
and yields an ordinary expansion. Same for “homomorphic”.
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• Has kinds, objects, operations, and maybe constants.
• Perhaps subject to some axioms.
• We always allow formal linear combinations.
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Filtered algebraic structures are cheap and plenty. In any
K, allow formal linear combinations, let K1 = I be the ideal
generated by differences (the “augmentation ideal”), and let
Km := 〈(K1)

m〉 (using all available “products”). In this case,
set projK := grK.

K =

K/K1 K/K2 K/K3 K/K4

· · ·

An expansion Z is a choice of a
“progressive scan” algorithm.
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Examples. 1. The projectivization of a group is a graded
associative algebra.
2. Pure braids — PBn is generated by xij , “strand i goes
around strand j once”, modulo “Reidemeister moves”. An :=
grPBn is generated by tij := xij −1, modulo the 4T relations
[tij , tik + tjk] = 0 (and some lesser ones too). Much happens
in An, including the Drinfel’d theory of associators.
3. Quandle: a set Q with an op ∧ s.t.

1 ∧ x = 1, x ∧ 1 = x, (appetizers)
(x ∧ y) ∧ z = (x ∧ z) ∧ (y ∧ z). (main)

projQ is a graded Leibniz algebra: Roughly, set v̄ := (v − 1)
(these generate I!), feed 1 + x̄, 1 + ȳ, 1 + z̄ in (main), collect
the surviving terms of lowest degree:

(x̄ ∧ ȳ) ∧ z̄ = (x̄ ∧ z̄) ∧ ȳ + x̄ ∧ (ȳ ∧ z̄).

— All Signs Are Wrong! —

Kashiwara, Vergne,
Alekseev, Enriquez,
Torossian.

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Montpellier-1006/
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