Day 1 — u, v, w: topology and philosophy
Dror Bar—Natan, Goettingen, April 2010
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http://www.math.toronto.edu/~drorbn/Talks/Goettingen—10Q

lans and Dreams
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@ Feed knot-things, get Lie algebra things.

@ Feed u-knots, get Drinfel’d associators.

e Feed w-knots, get Kashiware-Vergne-Alekseev-Torossian.

® Dream: Feed v-knots, get Etingof-Kazhdan.

e Dream: Knowing the question whose answer is 42, or E-K,
will be useful to algebra and topology.
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e Has kinds, objects, operations, and maybe constants.

objects of
kind 3

w

—=

¢

._\

e Perhaps subject to some axioms.

e We always allow formal linear combinations.
[Homomorphic expansions for a filtered algebraic structure K:

(PA :=Planar Algebra)
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IAn expansion is a filtration respecting Z : K — grC that
“covers” the identity on gr/C. A homomorphic expansion is

Circuit Algebras
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an expansion that respects all relevant “extra” operations.
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An expansion Z is a choice of a
“progressive scan” algorithm.

w-Tangles

{w-Tangles} = v-Tangles / ocC :

F'iltered algebraic structures are cheap and plenty. In any
/C, allow formal linear combinations, let Xy = Z be the ideal
igenerated by differences (the “augmentation ideal”), and let

7N Ko = ((K1)™) (using all available “products”).

The w-generators. | B & ( ) [ Brokensurface Eoo A [Examples. 1. The projectivization of a group is a graded

N = = = = lassociative algebra. 2. Quandle: a set Q with an op A s.t
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Q o " 2D lebol :ﬁ: INz=1, zN1l=uwzx, (appetizers)
Y = © & = S A (zAyY)ANz=(xA2)N(YA=2). (main)

% >\/<< 5o f Dirm reduc = OQ = proj @ is a graded Leibniz algebra: Roughly, set v := (v — 1)
Crossing = O & Vinual crossingvovies © O & (these generate I!), feed 1 +Z, 1 + 4, 1 + Z in (main), collect

IA Ribbon 2-Knot is a surface S embedded in R? that bounds
lan immersed handlebody B, with only “ribbon singularities”;
la ribbon singularity is a disk D of trasverse double points,
Whose preimages in B are a disk D7 in the interior of B and

the surviving terms of lowest degree:
@EAYDAZ=@ZAD)AGHTA(GAZ).

Our case(s).
Z: high algebra
K .

given a “Lie”
A = algebra g
solving finitely many proj K
equations in finitely
many unknowns

IC is knot theory or topology; proj KK = @ Z™ /™! is finite
combinatorics: bounded-complexity diagrams modulo simple

ccu(g)ﬂ

low algebra: pic-
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The w-relations include R234, VR1234 M, Overcrossings
Commute (OC) but not UC:
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Also see http://www.math.toronto.edu/~drorbn/papers/WKO/

relations.

. "God created the knots, all else in
. topology is the work of mortals."”
Leopold Kronecker (modified)

www.katlas.org?lg\f.,(,, :

Video and more at http://www.math.toronto.edu/~drorbn/Talks/Goettingen-1004/
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