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omomorphic expansions for a filtered algebraic structure K:

ops—=K = Ko D K1 D Ko
I 1z
ops—grkC := /Co//C1 D ]C1/IC2 SP) ]Cz//Cg D /Cg//C4 D ...
IAn expansion is a filtration respecting Z : K — grC that
“covers” the identity on gr/C. A homomorphic expansion is
lan expansion that respects all relevant “extra” operations.
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A Ribbon 2-Knot is a surface S embedded in R* that bounds
an immersed handlebody B, with only “ribbon singularities”;
a ribbon singularity is a disk D of trasverse double points,
whose preimages in B are a disk D; in the interior of B and
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iltered algebraic structures are cheap and plenty. In any
IC, allow formal linear combinations, let K; be the ideal
generated by differences (the “augmentation ideal”), and let
ICom, := ((K1)™) (using all available “products”).

he w-relations include R234, VR1234, M, Overcrossings
Commute (OC) but not UC, VVQ =1, and funny interactions
between the wen and the cap and over- and under-crossings:
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e Has kinds, objects, operations, and maybe constants.
e Perhaps subject to some axioms.
e We always allow formal linear combinations.
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xample: Pure Braids. PB,, is generated by z;;, “strand ¢
goes around strand j once”, modulo “Reidemeister moves”.
A, := gr PB,, is generated by ¢;; := z;; — 1, modulo the 47T
relations [ti;, i +t;x] = 0 (and some lesser ones too). Much
happens in A,, including the Drinfel’d theory of associators.
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Just for fun.
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Our case(s).
Z: high algebra

given a “Lie”
algebra g

A=
griC

“Z/l (9)77
solving finitely many
equations in finitely
many unknowns

/C is knot theory or topology; gr/C is finite combinatorics:
bounded-complexity diagrams modulo simple relations.

low algebra: pic-
tures represent
formulas
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An expansion Z is a choice of a
“progressive scan” algorithm.

[1] http://glink.queensu.ca/~4lb11/interesting.html 29/5/10, 8:42am|
IAlso see http://www.math.toronto.edu/~drorbn/papers/WKO/
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Video and more at http://www.math.to

ronto.edu/~drorbn/Talks/Bonn-0908/
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