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Knots are the wrong objects to study in knot
theory! They are not finitely generated and
they carry no interesting operations.

C@@DQ

>forge<
away
E connect

Knotted Trivalent Graphs

%@@

—

LA AN

Theorem (~). A homomorphic Z is

unzlp

Drinfel'd ,&

the same as a “Drinfel’d Associator”.
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Z is a Quantum Group?

More precisely, a ho-
momorphic Z ought to
be equivalent to the
Etingof-Kazhdan theory
of deformation quantiza-
tion of Lie bialgebras.

Etingf Kazhdan

Dror’s Dream: Straighten and
fatten this column.

An Idle Question.

Is there physics in this column

\SWitCh to w-knotted trivalent tangles,] 2

wKTT :=CA <X, X, Y> .
Theorem (~). A homomorphic Z is equiv-
alent to proving the Kashiwara-Vergng
statement.
Statement (~, KV, 1978) (proven
IAlekseev-Meinrenken, 2006). Convolu
tions of invariant functions on a group
match with convolutions of invariant]
functions on its Lie algebra: for any finite
dim. Lie group G with Lie algebra g,

(Fun(G)A4, ) = (Fun(g)*4 <, %).
(Closely related to the “orbit method” of]
representation theory). . Alekseev
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