

Stonehenge

From Stonehenge to Witten – Some Further Details

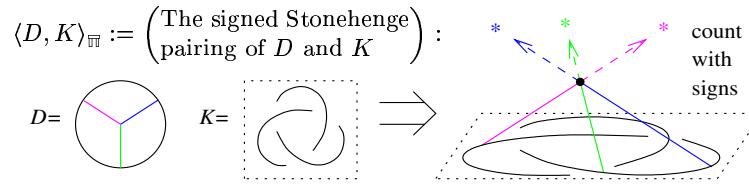
Oporto Meeting on Geometry, Topology and Physics, July 2004

Dror Bar-Natan, University of Toronto

Witten

We the generating function of all stellar coincidences:

$$Z(K) := \lim_{N \rightarrow \infty} \sum_{\text{3-valent}} \frac{1}{2^c c! \binom{N}{e}} \langle D, K \rangle_{\text{pair}} D \cdot \left(\begin{array}{c} \text{framing-} \\ \text{dependent} \\ \text{counter-term} \end{array} \right) \in \mathcal{A}(\mathcal{O})$$



Theorem. Modulo Relations, $Z(K)$ is a knot invariant!

Dylan Thurston

$N := \# \text{ of stars}$
 $c := \# \text{ of chopsticks}$
 $e := \# \text{ of edges of } D$

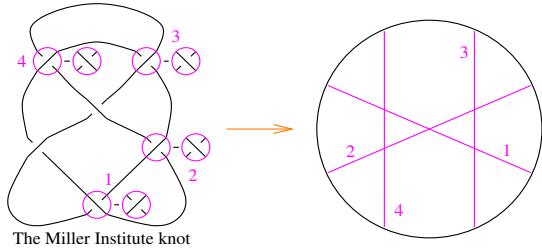
$\mathcal{A}(\mathcal{O}) := \text{Span} \left\langle \begin{array}{c} \text{H} \\ \text{I} \end{array} \right\rangle \middle/ \begin{array}{l} \text{oriented vertices} \\ \text{AS: } \text{Y} + \text{Y} = 0 \\ \text{& more relations} \end{array} \right.$

When deforming, catastrophes occur when:
A plane moves over an intersection point –
Solution: Impose IHX,
 $\text{I} = \text{H} - \text{X}$

An intersection line cuts through the knot –
Solution: Impose STU,
 $\text{Y} = \text{U} - \text{X}$

The Gauss curve slides over a star –
Solution: Multiply by a framing-dependent counter-term.

$$\int_{\mathfrak{g}\text{-connections}} \mathcal{D}A \text{ hol}_K(A) \exp \left[\frac{ik}{4\pi} \int_{\mathbb{R}^3} \text{tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right) \right] \rightarrow \sum_{D: \text{ Feynman diagram}} W_{\mathfrak{g}}(D) \sum \mathcal{E}(D) \rightarrow \sum_{D: \text{ Feynman diagram}} D \sum \mathcal{E}(D)$$



The Miller Institute knot

Definition. V is finite type (Vassiliev, Goussarov) if it vanishes on sufficiently large alternations as on the right

Theorem. All knot polynomials (Conway, Jones, etc.) are of finite type.

Conjecture. (Taylor's theorem) Finite type invariants separate knots.

Theorem. $Z(K)$ is a universal finite type invariant!
(sketch: to dance in many parties, you need many feet).

$W_{\mathfrak{g}, R} \circ Z$ is often interesting:

$\mathfrak{g} = sl(2) \rightarrow$ The Jones polynomial

The Jones polynomial

$\mathfrak{g} = sl(N) \rightarrow$ The HOMFLYPT polynomial

Przytycki

$\mathfrak{g} = so(N) \rightarrow$ The Kauffman polynomial

Kauffman polynomial

Vassiliev

Goussarov

Related to Lie algebras

$$\begin{array}{l} \text{Y} = \text{xy} - \text{yx} \\ \text{[x,y]} = \text{xy} - \text{yx} \\ \text{[x,y,z]} = [\text{x},[\text{y},\text{z}]] - [\text{y},[\text{x},\text{z}]] \end{array}$$

Sophus Lie

More precisely, let $\mathfrak{g} = \langle X_\alpha \rangle$ be a Lie algebra with an orthonormal basis, and let $R = \langle v_\alpha \rangle$ be a representation. Set

$$f_{abc} := \langle [a, b], c \rangle \quad X_\alpha v_\beta = \sum_\beta r_{\alpha\gamma}^\beta v_\gamma$$

and then

$$W_{\mathfrak{g}, R} : \text{Y} \rightarrow \sum_{abc\alpha\beta\gamma} f_{abc} r_{\alpha\gamma}^\beta r_{\beta\gamma}^\alpha r_{\gamma\alpha}^\beta$$

Planar algebra and the Yang–Baxter equation

$$\begin{array}{c} a \quad b \\ \diagup \quad \diagdown \\ c \quad d \end{array} = \begin{array}{c} a \quad b \quad c \\ \diagup \quad \diagdown \quad \diagup \\ h \quad j \quad i \\ \diagdown \quad \diagup \quad \diagdown \\ d \quad e \quad f \end{array} \quad R_{cd}^{ab} \\ R_{hi}^{ab} R_{jf}^{ic} R_{de}^{hj} = R_{di}^{ah} R_{hj}^{bc} R_{ef}^{ij} \end{array}$$

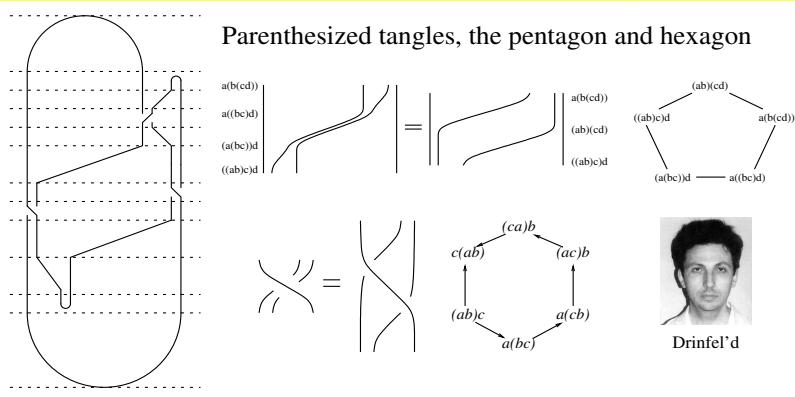
Yang

Baxter

Reshetikhin

Turaev

Parenthesized tangles, the pentagon and hexagon



Drinfel'd

Kauffman's bracket and the Jones polynomial

$$\langle \text{X} \rangle = \langle \text{Y} \rangle - q \langle \text{Z} \rangle$$

Indeed,

$$\langle \text{O}^k \rangle = (q + q^{-1})^k$$

$$\langle \text{L} \rangle = (-1)^n q^{n+2n} \langle \text{L} \rangle$$

$$(n_+, n_-) \text{ count } \langle \text{X}, \text{X} \rangle$$

$$\text{claim } \langle \text{X} \rangle = \langle \text{Y} \rangle$$

$$\langle \text{Y} \rangle = \langle \text{Y} \rangle - q \langle \text{Z} \rangle$$

$$-q \langle \text{Z} \rangle + q^2 \langle \text{Y} \rangle$$

$$(q + q^{-1}) = -q \langle \text{Y} \rangle$$

$$= -q \langle \text{Y} \rangle$$

"God created the knots, all else in topology is the work of man."

This handout is at <http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/>

More at <http://www.math.toronto.edu/~drorbn/Talks/Oporto-0407/>