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Crossing

The w−generators.
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Idea. Given a group G and two “YB”
pairs R± = (g±o , g±u ) ∈ G2, map them
to xings and “multiply along”, so that

Z

This Fails! R2 implies that g±o g∓o = e = g±u g∓u and then R3
implies that g+

o and g+
u commute, so the result is a simple

counting invariant.
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Abstract. The a priori expectation of first year elementary school
students who were just introduced to the natural numbers, if they
would be ready to verbalize it, must be that soon, perhaps by
second grade, they’d master the theory and know all there is to
know about those numbers. But they would be wrong, for number
theory remains a thriving subject, well-connected to practically
anything there is out there in mathematics.
I was a bit more sophisticated when I first heard of knot theory.
My first thought was that it was either trivial or intractable, and
most definitely, I wasn’t going to learn it is interesting. But it is,
and I was wrong, for the reader of knot theory is often lead to the
most interesting and beautiful structures in topology, geometry,
quantum field theory, and algebra.
Today I will talk about just one minor example, mostly having
to do with the link to algebra: A straightforward proposal for a
group-theoretic invariant of knots fails if one really means groups,
but works once generalized to meta-groups (to be defined). We will
construct one complicated but elementary meta-group as a meta-
bicrossed-product (to be defined), and explain how the resulting
invariant is a not-yet-understood yet potentially significant gen-
eralization of the Alexander polynomial, while at the same time
being a specialization of a somewhat-understood “universal finite
type invariant of w-knots” and of an elusive “universal finite type
invariant of v-knots”.

“divide and conquer”

A Standard Alexander Formula. Label the arcs 1 through
(n + 1) = 1, make an n× n matrix as below, delete one row
and one column, and compute the determinant:
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Alexander Issues.
• Quick to compute, but computation departs from topology.
• Extends to tangles, but at an exponential cost.
• Hard to categorify.
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Bicrossed Products. If G = HT is a group presented as a
product of two of its subgroups, with H ∩T = {e}, then also
G = TH and G is determined by H, T , and the “swap” map
swth : (t, h) 7→ (h′, t′) defined by th = h′t′. The map sw
satisfies (1) and (2) below; conversely, if sw : T ×H → H×T
satisfies (1) and (2) (+ lesser conditions), then (3) defines a
group structure on H × T , the “bicrossed product”.
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A Group Computer. Given G, can store group elements and
perform operations on them:

mxy
z

. . . so that mxy

u �
muz

v = myz

u � mxu

v

(or muz

v ◦ mxy

u =
mxu

v ◦myz

u , in old-
speak).

Also has Sx for inversion, ex for unit insertion, dx for register dele-
tion, ∆z

xy for element cloning, ρx
y for renamings, and (D1, D2) 7→

D1 ∪D2 for merging, and many obvious composition axioms relat-
ing those.

G{x,u,v,y} G{u,v,z}

x : g1

v : g3

y : g4

u : g2

v : g3

z : g1g4

u : g2

P = {x : g1, y : g2} ⇒ P = {dyP} ∪ {dxP}

A Meta-Group. Is a similar “computer”, only its internal
structure is unknown to us. Namely it is a collection of sets
{Gγ} indexed by all finite sets γ, and a collection of opera-
tions mxy

z , Sx, ex, dx, ∆z
xy (sometimes), ρx

y , and ∪, satisfying
the exact same linear properties.
Example 1. The non-meta example, Gγ := Gγ .
Example 2. Gγ := Mγ×γ(Z), with simultaneous row and
column operations, and “block diagonal” merges. Here if

P =

(

x : a b
y : c d

)

then dyP = (x : a) and dxP = (y : d) so

{dyP}∪ {dxP} =

(

x : a 0
y : 0 d

)

6= P . So this G is truly meta.

Claim. From a meta-group G and YB elements R± ∈ G2 we
can construct a knot/tangle invariant.

Closely related to work
by Le Dimet (Comment.
Math. Helv. 67 (1992) 306–
315), Kirk, Livingston and
Wang (arXiv:math/9806035)
and Cimasoni and Turaev
(arXiv:math.GT/0406269).
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"God created the knots, all else in
topology is the work of mortals."
Leopold Kronecker (modified)
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A Partial To Do List. 1. Where does it more

simply come from?
2. Remove all the denominators.
3. How do determinants arise in this context?
4. Understand links.
5. Find the “reality condition”.
6. Do some “Algebraic Knot Theory”.
7. Categorify.
8. Do the same in other natural quotients of the

v/w-story.
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Why Happy? • Applications to w-knots.
• Everything that I know about the Alexander polynomial
can be expressed cleanly in this language (even if without
proof), except HF, but including genus, ribbonness, cabling,
v-knots, knotted graphs, etc., and there’s potential for vast
generalizations.
• The least wasteful “Alexander for tangles” I’m aware of.
• Every step along the computation is the invariant of some-
thing.
• Fits on one sheet, including implementation & propaganda.

β Calculus. Let β(η, τ) be
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the αij are rational func-
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tmxy
z :

ω · · ·
tx α
ty β
... γ

7→

ω · · ·
tz α + β
... γ

,

ω1 η1

τ1 α1
∪

ω2 η2

τ2 α2

=
ω1ω2 η1 η2

τ1 α1 0
τ2 0 α2

,

hmxy
z :

ω hx hy · · ·
... α β γ

7→
ω hz · · ·
... α + β + 〈α〉β γ

,

swth
xy :

ω hy · · ·
tx α β
... γ δ

7→

ωǫ hy · · ·
tx α(1 + 〈γ〉/ǫ) β(1 + 〈γ〉/ǫ)
... γ/ǫ δ − γβ/ǫ

,

where ǫ := 1 + α and 〈c〉 :=
∑

i ci, and let

Rp
xy :=

1 hx hy

tx 0 X − 1
ty 0 0

Rm
xy :=

1 hx hy

tx 0 X−1 − 1
ty 0 0

.

Theorem. Zβ is a tangle invariant (and more). Restricted to
knots, the ω part is the Alexander polynomial. On braids, it
is equivalent to the Burau representation. A variant for links
contains the multivariable Alexander polynomial.

A Meta-Bicrossed-Product is a collection of sets β(η, τ) and
operations tmxy

z , hmxy
z and swth

xy (and lesser ones), such that
tm and hm are “associative” and (1) and (2) hold (+ lesser
conditions). A meta-bicrossed-product defines a meta-group
with Gγ := β(γ, γ) and gm as in (3).
Example. Take β(η, τ) = Mτ×η(Z) with row operations for
the tails, column operations for the heads, and a trivial swap.

I mean business!

. . . divide and conquer!

Some
testing
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The key trick:
ω hj

ti αij
←→ B

(

ω, Λ =
∑

i,j

αijtihj

)

.

Where does it come from? The accidental1 answer is that it
is a symbolic calculus for a natural reduction4 of the unique
homomorphic expansion2 of w-tangles3.

1. “Accidental” for it’s only how I came about it. There
ought to be a better answer.

2. A “homomorphic expansion”, aka as a homomorphic uni-
versal finite type invariant, is a completely canonical con-
struct whose presence implies that the objects in questions
are susceptible to study using graded algebra.

3. “v-Tangles” are the meta-group generated by crossings
modulo Reidemeister moves. “w-Tangles” are a natural
quotient of v-tangles. They are at least related and per-
haps identical to a certain class of 1D/2D knots in 4D.

4. To “only what is visible by the 2D Lie algebra”.

A certain generalization will arise by not reducing as in 4. A
vast generalization may arise when homomorphic expansions
for v-tangles are understood, a task likely equivalent to the
Etingof-Kazhdan quantization of Lie bialgebras.


