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Following Lin: Expansions for Groups

Riverside, April 2000 Kyoto, September 2001
See Lin’s “Power Series Expansions and Invariants of Links”,

1993 Georgia International Topology Conference, AMS/IP
Studies in Adv. Math. 2 (1997) 184-202.
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Think duals!  C(G)* are “finite type invariants”.
A(G)* are “weight systems”.
Z is a “universal finite type invariant”.

Zy 9 are Expansions.  With 7 =7, 0or Z° = Z,:
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The Kontsevich Integral for Braids
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2 M. Kontsevich

,  Dror’s Dream / Obsession:

"Unify" quantum groups - find one object that contains them all.
Example: One invariant to rule them all:

weight
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Easy! Universal! A Morphism! Unique! An Isomorphism!
What is a "Quantum Group™?  For now, a "deformation of the trivial"
solutionin U(g))®*[[h]] of the major equations:

A®DA=(1®A)A RIAR = A% Why care?

Quantum groups

(A® 1)R = R®R" (1® A)R = R12R™ computable

invariants
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(as well as a few minor equations).

Dror’s Guess: A unified object exists; we’ll need:

1. Expansionsasin Lin / universal finitetypeinvariants.

2. Naturality / functoriality.

3. Knotted graphs, especially trivalent.

4. Associators following Drinfel’d.

5. The work of Etingof and Kazhdan on bialgebras. katlas.org

6. Virtual braids/ knots/ knotted graphs. Edit!

7. Polyak (LMP 54) & Haviv (arXiv:math/0211031) on arrow diagrams.
(and when construction ends, we’ll dump the scaffolding)

(Quasi?) Natural Expansions
G +— C(G) and G — A(G) are functors. Can you choose a ((quasi?) natural)

Z satisfying C(Gy) c(A) C(Ga)
Z(G1) G b, Gy Z(G2)
A(Gh) ) A(G2)

Perhaps just on a subcategory of Groups? Perhaps Braids with strands

addition, deletion and doubling: , , )
e IR B

(
Virtual Braids crossings are real, strands go virtual
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Question Can you interpret quantum " "God created the knots,
groups as (quasi?)—natural expansions
on virtual braids?

Dror’s Guess:

all else in topology is the work of mortals”

No, but the effort

will be worthwhile. Leopold Kronecker (modified)

http://www.math.toronto.edu/~drorbn/Talks/Tianjin—0707/; thanks to Jana Comstock, Peter Lee, Scott Morrison.



