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orange: degree shifts
light blue: height shifts

The Reduction Lemma. If φ is an isomorphism then the complex
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is isomorphic to the (direct sum) complex
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Local Khovanov Homology
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"God created the knots, all else in topology is the work of mortals"

Leopold Kronecker (modified)
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MoreSigns?

crossings?

Where does it live?
Kom: Complexes Mat: Matrices Cob: Cobordisms <...>: Formal lin. comb.

In Kom(Mat(<Cob> / {S, T, G, NC})) / homotopy Computable! via "complex simplification":

So what?

* Easily generalizes to surfaces, virtuals, etc.
* Better understanding of functoriality.
* Removing G and replacing NC with 4Tu yields a more general theory!

0* *1

*0 1*

00
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11

10

The case of
tangles:

* A localized relation with Kauffman’s bracket.

* May shed light on Rasmussen’s
* May shed light on Lee’s theory.
* Will shed light on mutation invariance.

* Computable to 50−100 crossings!
* Extremely easy to prove invariance!
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