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Where does it live? In Kom(Mat(<Cob> / (S, T, G, NC})) / homotopy Computable' via "complex simplification":
Kom: Complexes Mat: Matrices Cob: Cobordisms <...>: Formal lin. comb. 7 1
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The Reduction Lemma. If ¢ is an isomorphism then the complex

The case of

tangles:
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is isomorphic to the (direct sum) complex
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TN So what? * Will shed light on mutation invariance.

* May shed light on Lee’s theory.
* Computable to 50-100 crossings!

* May shed light on Rasmussen’s
* Extremely easy to prove invariance! invariant.

* A localized relation with Kauffman’s bracket.

* Easily generalizes to surfaces, virtuals, etc. @& AN

* Better understanding of functoriality. Q ﬂ W

T http://www.math.toronto.edu/~drorbn/Talks/Utah—0506/ * Removing G and replacing NC with 4Tu yields a more general theory!
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