FUNDAMENTAL CONCEPTS IN DIFFERENTIAL GEOMETRY FALL 2000 EXERCISES HANDOUT # 12

- 1. (a) Show that a rank n vector bundle is trivial, if and only if there exists n linearly independent sections (i.e. s_1, \ldots, s_n such that for any b in the base space $s_i(b)$ are linearly independent.)
 - (b) Show that the Moebius band is the total space of a non trivial vector bundle of rank 1 over the circle.
 - (c) Show that $Mb \oplus Mb$ is a trivial bundle over the circle.
- **2.** Define a C^{∞} structure of a manifold on TM in such a manner that for each coordinate system (U,φ) on M, with local coordinates (x^1,\cdots,x^n) and frames E_1,\ldots,E_n , the set $\tilde{U}=\pi^{-1}(U)$ with mapping $\tilde{\varphi}:\tilde{U}\to R^{2n}$ defined as follows is a coordinate neighborhood. For $p\in U$ and $X_p\in \tilde{U}$, we suppose that $X_p=\sum \alpha^i E_{ip}$ and define

$$\tilde{\varphi}(X_p) = (x^1(p), \dots, x^n(p), \alpha^1, \dots, \alpha^n).$$

- **3.** A manifold M is called parallelizable, if TM is a trivial bundle.
 - (a) Show that S^3 is parallelizable.
 - (b) Is the Klein bottle parallelizable?
 - (c) Is S^2 parallelizable?

Date: 16 Jan., 2001.