Chapter 9

1, (a) Proof:
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(b) Proof:

1
From (a) we know the slope of tangent line at (a,1/a) is - —, then the equation of tangent
a

1
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line can be written asi - — = a(x1 a)U y=- —x+—, the graph of
a X- a a a

=- —X+— ad f(x):1 intersect at point (;x-ix+39 @,19 thus:
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\ the only intersect point is: 8%1,—2.
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9, (i) Proof:

(9= (crd O 1= ofxed (v =

5(X + 3)4 , on the other hand:

f(x)=(x+3° 0 f(x+3 =(x+6)° U f¢x+3)=5x+6)*
(ii) Proof:

f(x+3)=x*0 f(x)=(x-3°U f&x)=5(x- 3)*(x- J)¢=5(x- 3)*

f(x+3 =x*0 f€x+3)=5x*
(iii) Proof:
f(x+3)=(x+5)' 0 f(x)=(x+2) 0 f(x) =7(x+2)°(x+2) = 7(x+2)°

f(x+3)=(x+5)" U f&x+3)=7(x+5)°(x+5)¢=7(x+5)°
15, Proof:

@ |f(Ex*P |f(Q)£0°=0P f(0)=0 aso:
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\ f isdifferentiable at 0.
(b) Obvioudly, if |g(x)| £ X%, then | f (X)| £ |g(x)| £ x> U same as problem (a) above.

Thus, one can say, as long as |g(X)|£ x* and |f(X)| £|g(x)|, the function f is

differentiable at O.
23, Proof:

let g(x) = f (- x), then g€x) = (F (- X)) = & x)x- x) =- F¢- x) (by chainrule)
ontheother hand, f iseven thus, f(X)=f(-x)0 f(x)=g(x 0 f(x)=-f(- x)

Q.E.D.



