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Problem 1. All that is known about the angle « is that tan § = V2. Can you find sin «
and cos a? Explain your reasoning in full detail.

Solution. (Graded by C.-N. (J.) Hung) In class we wrote the formula sin 23 = 2sin 3 cos 3.
Also using sin? # + cos? 3 = 1 and taking 3 = 5 we get
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Dividing the numerator and denominator by cos? 5 this becomes
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Likewise using cos 23 = cos? 3 — sin? 3 we get
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Problem 2.
1. State the definition of the natural numbers.

2. Prove that every natural number n has the property that whenever m is natural, so is
m+n.

Solution. (Graded by V. Tipu)

1. The set of natural numbers N is the smallest set of numbers for which

e 1N,
e ifn &€ Nthenn+1¢&N.

Alternatively, the set of natural numbers N is the intersection of all sets I of numbers
satisfying

o lcl,
eifnelthenn+1€el.

2. Let P(n) be the assertion “whenever m is natural, so is m + n”. We prove P(n) by
induction on n:



(a) P(1) asserts that “whenever m is natural, so is m+1”. This is true by the second
bullet in the definition of N.

(b) Assume P(n), that is, assume that whenever m is natural, so is m +n. Let m be
a natural number. Then m+(n+1) = (m+n)+1 is a natural number because by
P(n) the number m + n is natural and because adding one to a natural number
gives a natural number by the second bullet in the definition of N. So we have
shown that whenever m is natural so is m + (n + 1), and this is the assertion
P(n+1).

Problem 3. Recall that a function g is called “even” if g(x) = g(—=) for all x and “odd”
if g(—x) = —g(z) for all z, and let f be some arbitrary function.

1. Find an even function E and an odd function O so that f = E + O.

2. Show that if f = Fy + Oy = Ey + Oy where E; and Es are even and O and O, are
odd, then F; = E5 and O; = O,.

Solution. (Graded by C. Ivanescu)

1. Set E(z) = 5(f(x) + f(—x)) and O(z) = 3(f(z) — f(—x)). Then E(z) + O(z) =
s(f(@) + f(=2) + f(2) — f(—2)) = 3(2f(x)) = f(z) while E(—2) = 5(f(-2) +
;E—E—x)); = 1 % = E(z) (so E is even) and O(—z) = 3(f(-z) —

2. Assume f = E + O where F is even and O is odd. Then
fl@)+ f(—z) = E(z)+O(z)+ E(—2)+ O(—x) = E(z)+O(x)+ E(x) — O(x) = 2E(x).

So necessarily E(z) = 3(f(z) + f(—z)). Now if f = Ey + Oy = Ey + O, as above,
then both E; and E, can play the role of E in this argument, so they are both equal
to 2(f(z) + f(—=)) and in particular they equal each other. Likewise,

f@) = f(=z) = B(z)+O(z) — E(—2) — O(—z) = E(z)+ O(z) — E(z) + O(z) = 20(x)
and arguing like before, O;(z) = %(f(x) — f(=2)) = Oy(x).

Problem 4. Sketch, to the best of your understanding, the graph of the function

1
x2—1

fz) =

(What happens for x near 0?7 Near +17 For large 7 Is the graph symmetric? Does it
appear to have a peak somewhere?)
Solution. (Graded by C. Ivanescu)

If || > 1 then 2* — 1 > 0 and so —— > 0; furthermore, the larger |z| is (while |z| > 1),
the larger 22 — 1 is and hence the smaller ﬁ is. When |z| approaches 1 from above, 2 — 1
approaches 0 from above and hence ﬁ becomes larger and larger. If |z| < 1 the 2> —1 < 0
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and so —— < 0. When z = 0, f(z) = —1 and when |z| approaches 1 from below, x
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2



1

—— becomes more

approaches 1 from below and 22 — 1 approaches 0 from below, and so
and more negative. In summary, the graph looks something like:

Problem 5.

1. Suppose that f(z) < g(x) for all z, and that the limits lim,_, f(z) and lim,_, g(z)
both exist. Prove that lim,_., f(z) < lim,_, g(x).

2. Suppose that f(x) < g(z) for all z, and that the limits lim, ., f(x) and lim,_, g(x)
both exist. Is it always true that lim, ., f(z) < lim,_, g(x)? (If you think it’s always
true, write a proof. If you think it isn’t always true, provide a counterexample).

Solution. (Graded by C.-N. (J.) Hung)

1. Let | = lim,_, f(x) and m = lim,_, g(z) and assume by contradiction that [ > m;
that is, that € := Z_Tm > 0. Use the existence of the two limits to find §; > 0 and d5 > 0
so that

O0<|z—al<d = |f(x)—I<e
and

0<|z—a|l <d=|g(x) —m| <e.
Now choose some specific x # a for which both |z —a| < ¢; and |x —a| < d2. But then
|f(xz)—1] <eandso f(x) > 1— e while |g(x) —m]| < € and so g(x) < m + €. Therefore
remembering that f(x) < g(z) for all x we get

l—e< f(z) <glx) <m+e

or

; [—m - [—m

_—— m —_—
2
or
m + 1 <M +1
2 2

which is a contradiction. Thus the assumption that [ > m must be incorrect and thus
m <.

2. Take f(z) =0 for all z and g(z) = 2? for all z # 0 and g(0) = 157. Then f(z) < g(z)
for all = but lim, ¢ f(x) = 0 = lim,_¢ g(z). So it isn’t always true that if f(z) < g(x)
for all  and the limits exist, then lim,_., f(z) < lim,_, g(x).

The results. 105 students took the exam; the average grade was 67.19, the median was
70 and the standard deviation was 21.12.



