COURSE INTRODUCTION:
WHAT HAPPENS TO A QUANTUM PARTICLE ON A PENDULUM 7
SECONDS AFTER IT IS TOSSED IN?

DROR BAR-NATAN

Follows a lecture given by the author in the “trivial notions” seminar in Harvard on April 29, 1989.

ABSTRACT. This subject is the best one-hour introduction I know for the mathematical
techniques that appear in quantum mechanics — in one short lecture we start with a mean-
ingful question, visit Schrodinger’s equation, operators and exponentiation of operators,
Fourier analysis, path integrals, the least action principle, and Gaussian integration, and at
the end we land with a meaningful and interesting answer.
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1. THE QUESTION

Let the complex valued function 1) = 9 (t, x) be a solution of the Schrédinger equation

A 1 1 .
E = —1 (—§Ax + 51’2) ’QD Wlth ’l/)|t:0 = wo.
What is ¢|t:T:g?
In fact, the major part of our discussion will work just as well for the general Schrodinger
equation,
o

1
Fri —iH, H = —§A$ + V(x), V)i=0 = o, arbitrary T

where:

e ¢ is the “wave function”, with | (¢, x)|* representing the probability of finding our
particle at time ¢ in position x.

e H is the “energy”, or the “Hamiltonian”.

e —1A, is the “kinetic energy”.

e V(x) is the “potential energy at x”.
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2. THE SOLUTION

The equation 22 = —iH with Y|i=0 = 1o formally implies

ot
(T, @) = (e o) (2) = (34T ) (a)
By Lemma 3.1 with n = 10%® 4 17 and setting z,, = = we thus get:
(T, z) = <61%Ae”%ve‘%Ae’i%V . ei%Ae’i%Vz/J()) ().

Now using Lemmas 3.2 and 3.3 we find that this is: (¢ denotes the ever-changing universal
fixed numerical constant)

(wn—zp_1)2 T (z9—=z1)? T (21 —20)? T
C\/dxn_lel 2T /n e_zﬁv(xnfl) . /dxlez 2T /n e—ZﬁV(xl) dl‘oe 2T /n e_lﬁv(mo)wo(l‘o)
Repackaging, we get

T < Tp — Th—1 2 T —
(T, x) = c/dxo c..dr,_1exp (Z%Z (T—/n) _ E >

1

k=1

Vi ) Yo (o).

0

Now comes the big novelty. keeping in mind the picture
x

0'22 kT T t
n n n

and replacing Riemann sums by integrals, we can write

U(T, z) = c/de/W Dxexp( / dt (%;;:2(15) - V(a:(t)))) Yo(20),

z0Tn

where W, ., denotes the space of paths that begin at zy and end at z,,
Weow, ={2:[0,T] = R: 2(0) = xg, z(T) = z,,},

and Dz is the formal “path integral measure”.
This is a good time to introduce the “action” L:

L(x) = /0 " (%i‘Z(t) _ V(x(t))) |

(T, z) = C/deo’l/Jo(ZE()) /W Dxe®),

TOTn

With this notation,
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Let x. denote the path on which £(x) attains its minimum value, write z = z. + 2, with
x4 € Woo, and get

(T, x) = c/dxowo(:vo) D er et
Woo

In our particular case £ is quadratic in x, and therefore L(z. + z,) = L(z.) + L(z,) (this
uses the fact that z. is an extremal of L, of course). Plugging this into what we already
have, we get:

_ iL(xc)+il(zq) iL(zc) iL(zq)
) - 0 - .
(T, x) c/dx Yo(xo) Dz e c/dxowo(xo)e Dz e

Wo 0 WO 0

Now this is excellent news, because the remaining path integral over Wy, does not depend
on xy or x,, and hence it is a constant! Allowing ¢ to change its value from line to line, we
get

Y(T,x) = C/dfﬂowo(a?o)ew(xc)'

Lemma 3.4 now shows us that z.(t) = zocost + z,sint. An easy explicit computation
gives L(x.) = —xox,, and we arrive at our final result:

2
Notice that this is precisely the formula for the Fourier transform of ! That is, the answer
to the question in the title of this document is “the particle gets Fourier transformed”,
whatever that may mean.

w(z,@ = C/diﬁol/fo(%)emxn-

3. THE LEMMAS

Lemma 3.1. For any two matrices A and B,
eA-i-B = lim (eA/neB/n)n )
Proof. (sketch) Using Taylor expansions, we see that e™+7 and eA/meB/m differ by terms at

most proportional to ¢/n?. Raising to the nth power, the two sides differ by at most O(1/n),
and thus

. A+B\ ™ . n
AP = lim (e n ) = lim (eA/”eB/”) ,
n—oo

as required. O

Lemma 3.2.

Lemma 3.3.




Proof. In fact, the left hand side of this equality is just a solution (¢, z) of Schrodinger’s
equation with V' = 0:

i

o §Ax?/% Y]i=0 = Yo.

Taking the Fourier transform (¢, p) = % [ e P*)(t, x)dx, we get the equation
o p? - ~ ~
Wo il o=

For a fixed p, this is a simple first order linear differential equation with respect to t, and
thus,

Bt p) = e Jolp).

Taking the inverse Fourier transform, which takes products to convolutions and Gaussians
to other Gaussians, we get what we wanted to prove. O

Lemma 3.4. With the notation of Section 2 and at the specific case of V(x) = La? and

2
T =73, we have
xe(t) = xgcost + x, sint.

Proof. 1f x. is a critical point of £ on Wy, , then for any z, € Wy there should be no term
in £(x. + ex,) which is linear in e. Now recall that

L(x) = /OT dt (%f?(t) _ V(:c(t))) |

so using V' (z. + exy) ~ V(z.) + ex,V'(x.) we find that the linear term in € in £(z, + €x,) is

/0 "t (Goirg — V' (20)24) -

Integrating by parts and using x,(0) = x4(T") = 0, this becomes

T
/ dt (=2, — V'(z.)) 24
0
For this integral to vanish independently of z,, we must have —%, — V'(z.) =0, or

. , This is the famous F' = ma of Newton’s, and we
Fe = —V'(z.).

have just rediscovered the principle of least action!
In our particular case this boils down to the equation
:i'c = — T, wc<0) = o, 370(77'/2) = Tn,

whose unique solution is displayed in the statement of this lemma. 0
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4. THE MORALS

e Schrodinger’s equation is related to some infinite dimensional “path integrals”.

e These path integrals can sometime be evaluated, with interesting and useful results.

e The Fourier transform fits within some 1-parameter family of unitary operators,
defined by U, = e~ for t other than 5. The same techniques lead to explicit
formulas for U; for any t¢.

e We’d better work harder, to understand how all of this fits into some bigger coherent
picture.
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